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ABSTRACT. In this paper we derive the asymptotic sampling distributions
of maximum likelihood estimators based on an interval-censored data
sample from a normal population and propose two test statistics analogous
to the Student’s t-ratio test and the Snedecor’s F-ratio test in the analysis
of variance. And the results of simulation studies of these tests for means
are exhibited.
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1. Introduction

It is an obvious fact that observations are dependent upon their observation
systems. The same random sample produces different sets of sample values,
according to different observation systems. In this sense we are practically obliged
to deal with a random data sample depending on a specified observation system.

Sampling Observation
system system

> Data Sample

Statistical Inference

As examples of observation system we can adduce periodical inspection,
periodical medical checkup and appointment system in medical examination.
In these cases the random variables under studies — a life span of machine
part, an age when a specified deciduous tooth erupted and a period of time
from a surgical operation to relapse of the disease — are continuous but, in
general, we cannot observe their realized values exactly. A continuous random
variable X is said to be interval-censored into a non-zero interval I if the only
information about a realized value of X is that the realized value lies in I
We call a random data sample an interval-censored data sample if all the
individual values are interval-censored.

We will discuss the properties of maximum likelihood estimators based on
an interval-censored data sample. In this connection, it is -clear that the
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discussion below is applicable to a grouped data sample, because a grouped
data sample is the special case of an interval-censored data sample.

2. Notations and definitions

Let X« be a continuous random variable with values over (&, 7) (—oo <
& <7 < oo), and its distribution function be F(x, 6), where ¢ is an unknown
parameter vector. The parameter space is assumed to be an open set in an m
dimensional Euclidian space R™ and will be denoted by ©.

Let Xa = (Xa0, Xal, ..., Xasy Xa,s,+1) be a censoring observation
vector for Xa, where & = Xa0 < Xal < ... <Xasy < Xegysy+1 =7 and Xai,
Xa2, ..., Xas, are a sequence of constants independent of realized value of
Xa and 4.

Then we have a multinomial random variable

do = 4 (Xa, Xa) = (a0, a1, --.., Azxsa)
defined for the pair (Xa, X&) by
dap = {1 lf Xa € (XaB, Xa,8+1),
0 if Xa € (X8, Xa,8+1), B =0, ..., sa.

S,
It is clear that Pr{dag = 1} =F(Xa,g+1, 8) — F(xaB, 0) andBZaOPr {dap = 1}
=1.

Now let Xa; @ =1, ..., n be independently and identically distributed
random variables with distribution function F (x, §) and with censoring observa-
tion vector Xo ; a=1, ..., n individually, where Xqo’s are not necessarily
different. Then we have a set of n independent observations

do = (AaO, dot, ..., Aasa); o = 1, .., L
{(day Xa); ¢ =1, ..., n} constitutes an interval-censored data sample.

Group examination (k=3)

No. Ist 2nd 3rd (Ko Xafy+1)

1 o— A (X1, X1, dp=1
e ST X1 1, X12), dn

2 o Y = "(X99, Xg3), dgp=1
X -~ -~ (X9g, Xp3), dpp=1

3 o— A (x31, X39), dz;=1
X31 X32 X3 . 31 327> 431

4 O— AN (X43, OO), d43= 1

e X41 X42 X43

5 62 - A - (0, xs5), dsp=1

Xs51 X52 . X53 » L TR0
>

chronological time

o=born, A=erupted, ®=censoring observed,

Xg@=an age of the a—th child at the 8-th group examination
Illustration of an Interval-Censored Data Sample
—An eruption age of specified deciduous tooth—
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The log-likelihood function of this interval-censored data sample is given
by

n S
(1) log L(O) o< Zl ,820 dap log[F(Xa, g+1, 0) — F(xap, 0)].
a= =

Let da be an observed vector of 4o with dag, = 1 for some Ba (0 <L
Ba < sa). Then the log-likelihood of the observed interval-censored data
sample is given by

@) log £(§) o nleog[F(Xa,,ea+1, 6) — F(xag,y 0)].
a=

The maximum likelihoed-estimate (MLE) @ of the parameter @ is defined
as the value of § € © which attains the supremum of log £(0), i..,

(3) log £ (6) = sup log £(0).
=)

Since the parameter space © is an open set, it may sometimes happen that
the supremum in (3) is not attained at an interior point of the parameter space
0, i.e., the MLE does not exist. If the MLE is indeterminable because log £(&)
attains its maximum everywhere in a certain region of the parameter space,
we will regard the situation as equivalent to the one where the MLE does
not exist.

3. Existence of MLE in a normal population

When the distribution function F(x, #) is a normal distribution function,
the existence theorems of MLE 0 = (//\l;, 32) based on an interval-censored data
sample have been developed in our previous paper.®

Namely, using the condition
(€©) : xa1 < XaB, < Xa,s4—1 hold for at leastonea =1, ..., n
and another condition
(C*) : Putting ¢ = XaB, OF Xa,8,+1 for any a = L, ..., 0, X8 +1 < &
or ¢ < X8, holds for at least one &’ € {1, ..., n} in either case of ¢,
the existence theorems are expressed as follows.
Theorem 1. Let {da; dag, =1, a=1,..., n} be an observed interval-censored
data sample of a random sample {Xa; @ =1, ..., n} from a normal distri-
bution function F(x, #) with respect to the censoring observation vector {(Xe ;
a=1,...,n}. Assume that {da ; dag, =1, a = 1, ..., n} satisfies the

condition (C). Then the MLE D= (;/;, >%) based on {da; dap, =1, a=1,

.., n} exists if and only if {da; dag, =1, a = 1, ..., n} satisfies the
condition (C¥*).
Theorem 2. Assume that {d«; deg, =1, @ =1, ..., n} does not satisfy the

condition (C), but fulfills the condition (C¥). Let A be the set of @ with dao
= 1, and let Xq. be
{Xasa if ﬁa =Sa’

X = 1xat if Ba = O.
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If 0 < n(A) < n hold and the inequality

n
2z Xa. Z Xal
(4 a=1 A
4 n = n(A)
holds, then the MLE § = (i, o2) based on {da; dag, =1, & =1, ..., n}

exists, where X implies the summation over the set A and n(A) is the cardinality
A

of A.

The theorem 1 is mainly concerned with a sample whose variable has a cen-
soring observation system x, with s, > 2 for almost all &, and the theorem
2 is mostly connected with a sample whose variable has a censoring observation
system x, with s, = 1 for almost all a.

4. The asymptotic variance-covariance matrix of MLE’s and their asymptotic
efficiencies

Interval-censoring causes a loss of information but has the merit of easier
collection of data. We can measure our loss of information by using the
desirable properties of MLE.

For any sample size n, there is a positive probability that the MLE 6 for
an interval-censored data sample will not exist. Therefore, the MLE ¢ cannot
be considered .as a random variable in the strict sense. Since the asymptotic
properties discussed below have reference to an infinite sequence of random
variables, we consider the random variable which has the distribution function
Pr {§g x| 6 exists} instead of . This random variable will be called
the conditional MLE of § and be denoted by 4.

Let Xa ; a =1, 2,..., n be independently and identically distributed
random variables each of which has the same normal distribution function
F(x; u, o?) and an individual censoring observation vector Xa; & =1,2,...,
n reépectively, where Xa’s are not necessarily different. When n — oo, the
censoring observation vector xo for Xo may be assumed to be selected at
random out of m different censoring observation systems.

Assuming that the both parameters # and o® are unknown, we consider
the maximum likelihood simultaneous estimate (MLSE) 0 = (;/;, c;z) based on
an interval-censored data sample. In this case, MLSE o —(,12, Az) is obtained
as the solution of normal equatlons by the 1mproved Newton-Raphson iterative
method uniquely under the theorem 1 or 2. It is known that MLSE 0 = (/1,
%) is consistent and asymptotically efficient if it exists, and Pr{@ = ([b, %)
does not exist} will tend to zero as n —>co. Therefore, the conditional MLSE
] =(;, o2) with the distribution function Pr{a <x | 0 exists} will be consistent
and asymptotically efficient. Then the following relation for the variance-
covariance matrix of ;, and o will hold for sufficiently large n :
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1 (4dpap)? (4pap) (4zapdpap) | -1
“on 22 4ADap Zo-3n Zz A®ap

(4pap) (dzapdap) 1 (4zapdap)®
Z 4 CIDa,B 4o%n Z 2 4 @a[-}

(5) n-V(u, o=
20-3n Z

where every XY means Z Z and zag = (XaB—p)/o, dbag = $(za,8+1) —

a=1 B=0
b(zap) 1, dzappap=12a,8+19(Za,8+1) —Zapd(zap), 4Pap = D(za.p+1)— P(zap)T.
On the other hand, it is a well-known fact that for an exactly observed
data sample we have

RENFRES
N ~N 2
(6) lim n-V(g, 02 =| ° .
n—00
0 754

The right hand of (5) will tend to (6) as n —co, when every censoring obser-
vation points (Xa0, Xal, **, Xasys Xassy+1) SIOWS infinitely fine.

From (5) and (6) we can derive the asymptotic efficiency of p, and the
one of o2 as follows respeggiveby. i

I oo (@ag)? 1/ 1 vy (4bas)(dzapdag) 2 / 1
M e(w) = ZZ T ADas _T<_n_ ZZ 4Pap )/ 2n

(AZaB‘i)aﬁ)z
Z Z 4 CI)a,B’

oy e (dzapdpas)® _ (4dpap)(dzappap) \2 / 1
® o) == 37 ~ iDPag % 22 1Dap )/ -
» (dpap)? .

4Pap
Sa
where every XX means Z z .
a=1 8=0

5. The asymptotic properties of some functions of maximum likelihood esti-
mators

As the conditional MLSE 6 = (2,3—2) will be consistent and asymp-
totically efficient and both 71, and o be asymptotically normally distributed for
large n respectively, the following propositions are analogized using (7) and (8).
In the propositions below, n* = n-e(p,) and n** = n-e(o-z)

(9) The random variable. # has an asymptotic normal distribution N(u, o%/n%*).
(10) The random variable n**s2 has an asymptotic. X? distribution with n**
-1 degrees of freedom. '

(11) The random variable t = 1/11*(;/, ,Lb)/l/n** 2/ (n** -1 has an

D d(e) and ®(-) are the probability density function and dlstrlbutlon functlon
of the standard normal distribution respectively,




202 ) T. Kariya

asymptotic t distribution with n** — 1 degrees of freedom.
(12) For two samples, the random variable

s (B1 — po) —(p1 — o)

VI/aF +1/05% V(n %52 + ny¥%5,2)/(n** + ng** — 2)

has an asymptotic t distribution with n;** + ny** — 2 degrees of freedom,
where suffix i corresponds to each normal population with common variance
respectively. L . .
(13) For r (> 3) samples, the random variable

= n*(ps — pr)2/(r — 1)

r ~ T
S n**g? /3 (npt — 1)
1 1

- - r
has an asymptotic F distribution with (r — 1, Z«(n;** — 1)) degrees of freedom
1

under the null hypothesis H: u; = py = ... = pr and o> =03’ = ... =05
where ;T is the MLE of mean of overall population,

If the sample size n; is not so small and censoring observation vector X;
is not inadequate extremely, we can perform the statistical inference approx-
imately by means of (9) ~ (13).

6. Results of simulation studies

In the previous paragraph, the distributions of the maximum likelihood
estimators were analogized only for sufficiently large n of observations or n
—> co. Here the distributions of estimated t-ratio, sum of squares and F-ratio
will be investigated for n limited.

In order not to make things undully complicated, we consider the following
simulation model :

Xi; = a+ Bi+Eij, i=1,...,71,

j 1 <y D

where &;;’s are independently and normally distributed with zero mean and

variance o2. Furthermore, let the censoring observation vector be all common,
namely, Xij = X=(-0c0, X,..., Xk, ) (k> 2).

In this model, an interval-censored data sample degenerates into a grouped
data sample, and the estimated quantities will increase in discreteness. Ac-
- cordingly, the sampling distribution of the quantity will be worse accordance
with the asymptotic distribution. :

Now we consider the MLSE & =(71,, 3—2). In this case MLSE’s (;,, 0'32) based
on interval-censored data samples are obtained as the solutions of normal
equations by the improved Newton-Raphson iterative method uniquely under
the condition that all values do not fall into neighbouring any two intervals

T iy
2181 = 09 Eni = 1,
1 1

y o
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(including both end intervals). Practically we put

r=4, n, =n, =ng=n4 =20, n= 380,

a =0, (8, Bz Bs By =(-05,0.0,02, 03), ¢ =1, and

k= 8, (X, Xp, ..., Xg) = (3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5).
Then we have

X5 ~ N (=05, 1),

Xy ~ N (0, D),

Xs5 ~ N (02, 1),

X4 ~ N (0.3, 1).

From (7) and (8), we get

e () = 0.923 and e (o2) == 0.854
in every X;; and their aggregation, and so n;* == 18.46, n;** = 17.08 and
n**= 68.32. :

We repeated the generation of four standard normal samples (size 20)
1000 times and obtained the following results.

In the following tables, t;, SS; and F; are ordinary t-ratio, sum of squares
and F-ratio based on the exactly observed data sample respectively. And the
figures in * column (or row) show the frequency of values being significant
at 5% level but not at 1% level, and the figures in ** column (or row) show
the frequency of values being significant at 1% level.
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TABLE 1. Correlation table of t and .
N
tl * *K Total
936 16 952
£
t 11 21 8 40 48
ek 0 3 5 8
Total 947 40 13 1000
~
53
f; * Fk Total
933 16 2 951
*
ts 16 22 4 42 49
Aok 0 0 7 7
Total 949 38 13 1000
~——
51
a * F¥ Total
926 14 1 941
* 19 26 3 48
t 59
i Hok 0 3 8 11 }
Total 945 43 12 1000
~
55
a * ok Total
922 13 0 935
*
t 13 24 10 47 } 65
ok 2 6 10 18
Total 937 43 20 1000
—_—
63
~ ::i"'llfi % /nifF—1 . o~
t; —:i ]/n. ‘/W <~ otppk_q 2 (cf t; tio )
ni* = 18.46, n** ~ 17.08
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A
TABLE 2. Correlation table of SS; and SS;.

A
& * Hok Total
946 15 0 %1
*
. 14 19 2 31 3
$% 0 2 2 4
Total 960 36 4 1000
P
40
A
& * Hok l Total
940 12 0 932
*
. 17 20 4 M1 48
ok 0 4 3 !
Total 957 36 7 1000
P
43
A
8 % *k Total
947 10 0 97
¥ 14 19 2 35
SS; o 0 1 7 8} ®
Total 961 30 9 1000
N /_____/
39
A
8, % sok Total
929 19 1 949
* 13 23 5 41
s 51
4 ok 1 3 6 10}
Total 943 45 12 1000
N /—/
57
AN A~
§Si = nMG2 1 Xy (cf. S8, ~ X2 )

205
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TABLE 3. Correlation table of F and F.
F * Fok Total
351 44 0 395
*
F 40 139 35 214 } 605
sk 0 37 354 391
| Total 391 220 389 1000
| S I ——
609

r ~ A~
)%. n*(u —pr)?2/ (@ —1)

52
Il

1

o3|

. (cf F ~F)
r ~ T ok 1
X ke /3 (1) T 1)

1

n* = 18.46, ni** - 17.08

These correlation tables show that estimated t-ratio based on grouped

data (degenerated interval-censored data), say a, ‘are good accordance with
ti-ratio based on exactly observed data from a viewpoint of testing, and

a similar result is obtained in the relation between E-ratio and F-ratio.

Therefore, we can perform the statistical tests approximately by means of

A~ A
t and F, if a sample size is not so small and a censoring observation vector
is not so inadequate.

D
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