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Sphingosine-1-phosphate receptor 1 expression in angiosarcoma: 
 Possible role in metastasis and a potential therapeutic target
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ABSTRACT   Sphingosine-1-phosphate (S1P) is a potent lipid mediator that has been 
implicated in the migration of lymphocytes and endothelial cells through S1P receptors. S1PR1 
is strongly expressed in angiosarcoma, a malignant tumor of endothelial cell origin that has a 
high propensity for metastasis and poor prognosis; however, the pathological significance of 
S1PR1 expression is not clear. In this study, we investigated the effect of S1PR1 modulation 
on cell migration, and examined its potential role as a therapeutic target against metastatic 
dissemination of angiosarcoma. S1PR1 expression in the human angiosarcoma cell line MO-LAS 
was assessed by immunocytochemical examination and Western blotting. Effects of S1PR1-
specific small interfering RNA (siRNA) and that of FTY720-P (a functional S1PR1-antagonist) 
on MO-LAS cell chemotactic migration towards sphingosine-1-phosphate (S1P) or 10% fetal 
bovine serum (FBS) were assessed by Transwell migration assay; wound healing assays for 
random cell migration were performed using a live cell analyzer. Immunostaining revealed high 
expression of S1PR1 on the MO-LAS cell membrane. Transwell and wound-healing assays 
showed that S1P enhanced chemotactic and random migration of MO-LAS cells, respectively. 
Inhibition of S1PR1 expression with siRNA significantly attenuated chemotaxis of cells towards 
S1P and 10% FBS. Further, FTY720-P strongly induced the internalization and degradation of 
S1PR1 even in the presence of serum containing S1P. It attenuated chemotactic cell migration 
of MO-LAS towards both S1P and serum, as well as the random motility of cells at nanomolar 
concentrations. These results suggest that the S1P/S1PR1 axis may be a potential therapeutic 
target for inhibition of angiosarcoma metastasis by controlling its cell motility.
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INTRODUCTION
   Angiosarcomas are aggressive malignant tumors 

that originate from vascular or lymphatic endothelial 

cells１）. Despite radical surgery and adjuvant 

radiotherapy for localized tumors, angiosarcomas 

show a high rate of metastasis, most commonly 

to the lungs. Accordingly, development of novel 

treatment modalities for angiosarcoma, such 

as those that aim to prevent metastasis, is a key 

research imperative２）. However, molecular research 

to identify potential therapeutic targets against 

invasive and metastatic properties of angiosarcoma 

has been largely lacking２，３）. 

   Sphingosine-1-phosphate (S1P), a potent 

lipid mediator, is a by-product of sphingolipid 

metabolism, which is generated in cells by the 

action of sphingosine kinase (SK)４，５）.  S1P 

receptors are ubiquitously expressed in different 

tissues and are coupled to a variety of G proteins. 

S1P is known to be an important transducer of 

intracellular signals that are involved in biological 

processes such as proliferation, survival, migration, 

and morphogenesis of normal and malignant 

cells, via activation of S1P receptors 1-5 (S1PRs 

1-5)６，７）. These receptors preferentially couple to 

different downstream signaling pathways, and the 

receptor-dependent biological response elicited 

by S1P in a specific cell type appears to critically 

depend on the cell type and the expression levels 

of receptor subtypes. S1P/S1PR1 or S1P/S1PR3 
signaling promotes cell migration via activation 

of Rac through Gi８）, while S1P/S1PR2 signaling 

was shown to inhibit cell migration by inducing 

activation of Rho/Roh kinase９）. S1P is secreted by 

platelets, erythrocytes, and endothelial cells10，11）; 

thus, blood plasma contains a higher concentration 

of S1P (191 ± 79 nM) as compared to that in 

tissues10）. 

   Cell migration is fundamental to metastatic 

dissemination of malignant tumors12）. Tumor cells 

with S1PR1 expression may have high migration 

activity by transducing S1P/S1PR1 signaling 

to regulate actin reorganization and pseudopod 

formation13）. This hypothesis is supported by 

the known significance of S1PR1 in regulating 

trafficking of normal lymphocytes by means of 

S1P concentration gradients formed between 

circulatory blood and tissues in vivo14）. Based on 

the current body of evidence, a S1P gradient may 

control metastasis of tumors with high expression 

of S1PR1, which presents a novel opportunity for 

therapeutic intervention15）. 

   In our previous studies, in-situ localization of 

S1PR1 in human tissues and strong expression of 

S1PR1 in angiosarcomas and normal endothelial 

cells were observed after immunostaining of 

formalin-fixed paraffin-embedded (FFPE) sections 

with a well-defined commercially available 

anti-S1PR1 antibody16，17）. Moreover, Krump-

Konvalinkova et al.18） demonstrated that the siRNA 

targeting S1PR1 inhibited S1P-induced actin 

reorganization and expression of adhesion molecules 

VE-cadherin and PECAM-1 in the angiosarcoma 

cell line AS-M.5. These findings suggest that the 

invasive properties and the metastatic potential of 

angiosarcoma cells may be mediated via the S1P/

S1PR1 axis, and that this axis may be a potential 

therapeutic target.

   In this study, we investigated expression of 

S1PR1 in the human angiosarcoma cell line MO-

LAS, sourced from a patient with cutaneous 

angiosarcoma19）, and examined its role in cell 

migration. To this end, we studied the effect of a 

functional antagonist of S1PR1, the phosphorylated 
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form of FTY720 (FTY720-P), on MO-LAS cell 

migration stimulated by S1P and also by 10% fetal 

bovine serum (FBS), the latter being more akin to in 
vivo conditions. Our results underline S1P/S1PR1 
signaling as a potential therapeutic target against 

angiosarcoma metastasis, by virtue of its critical 

role in cell motility. 

MATERIALS AND METHODS
   The study design (452-3, 1590-1) were approved 

by the research ethics committee at the Kawasaki 

Medical School and Hospital.

Patients and tissue samples
   A total of five biopsy specimens of cutaneous 

angiosarcoma and one autopsy specimen of a 

pericardial angiosarcoma metastatic lesion in 

the lung, which were diagnosed in Kawasaki 

Medical School Hospital during 2002-2014, were 

used for immunohistochemical (IHC) study of 

S1PR1 expression. All cases were confirmed on 

histopathological and IHC examination using 

antibodies against von Willebrand factor (DAKO, 

Tokyo, Japan), CD31 (platelet endothelial cell 

adhesion molecule, PECAM-1; DAKO), and CD34 
(QbEnd10, DAKO). 

Reagents
   D-erythro-S1P, FTY720, FTY720-phosphate 

(FTY720-P), and JTE013 (antagonist of S1PR2), 
were purchased from Cayman Chemicals (Ann 

Arbor, MI, USA). Fatty-acid free bovine serum 

albumin (FAF-BSA) was purchased from Sigma (St. 

Louis, MI, USA). S1P was dissolved in dimethyl 

sulfoxide (DMSO) at a concentration of 2 mM and 

stored at -20℃. The 2 mM solution was further 

diluted to 0.5% FAF-BSA/PBS and added to cell 

migration and wound healing assays. FTY720 was 

dissolved in water at a concentration of 10 mM and 

stored at -20℃. FTY720-P was prepared as a 1 mM 

solution in DMSO and stored at -20℃. FTY720-P 

stock solution was warmed at 37℃ for 10 min prior 

to its use in experiments. JTE013 was dissolved in 

phosphate buffered saline containing methanol at a 

concentration of 1 mM.

Cell lines and cell culture 
   A human angiosarcoma cell line, MO-LAS19）, 

derived from specimens collected from pleural 

effusion of the patient with cutaneous angiosarcoma 

of the scalp, was obtained from the Cell Resource 

Center for the Biomedical Research Institute of 

Development, Aging and Cancer, Tohoku University. 

This cell line was expanded and placed in stock 

within a month of receipt. Cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM) 

(Sigma) containing 10% fetal bovine serum (FBS) 

(Sigma) that was heat inactivated at 56℃ for 30 
min, 200 μg/mL kanamycin, and were incubated at 

37℃ in a Personal Multi Gas Incubator APM-30D 

(Astec, Fukuoka, Japan). 

Immunocytochemistry (ICC) /Immunohistochemistry 
(IHC)
   MO-LAS cells were solidified using iPGell 

(Genostaff,  Tokyo, Japan) according to the 

manufacturer’s instructions. The cell blocks were 

fixed with 10% formalin neutral buffer solution 

and embedded in paraffin using a standard 

method. Paraffin-embedded MO-LAS cells and 

skin and lung tissues were cut into 3μm sections 

and deparaffinized. Subsequently, sections were 

incubated in antigen retrieval CC1 solution for 60 
min at 98℃ followed by staining with the Ventana 

Discovery XT system using an avidin-biotin 

detection system. Primary antibodies included the 

well-defined rabbit polyclonal anti-S1PR1/EDG-

1 (Santa Cruz Biotechnology, CA, USA; 1:20 
dilution as described elsewhere)16，17）. Sections were 

incubated with primary antibodies against S1PR1 
for 60 min. A diaminobenzidine hydrochloride 

solution with hydrogen peroxide was used as the 

chromogen, and slides were counterstained with 



34 Kawasaki Medical Journal

hematoxylin. 

Western blot (WB) analysis
   MO-LAS cell lysates were directly resuspended 

and boiled in lysis buffer containing 1% sodium 

dodecyl sulfate, 1.0 mM sodium orthovanadate 

and 10 mM Tris (pH 7.4). Lysates were then 

homogenized, boiled for 5 min, passed through a 

26 G needle 5-10 times, and centrifuged. Protein 

concentrations of cell extracts were determined 

using NanoDrop 1000 (Thermo Fisher Scientific 

Inc., Waltham, MA, USA). Proteins (20 μg) were 

loaded onto NuPAGE 4%-12% gels (Thermo Fisher 

Scientific) along with molecular weight marker 

(Novex Sharp Pre-Stained Protein Standard) and 

MagicMark XP Western Protein Standard (Life 

Technologies). After electrophoretic separation, 

proteins were transferred to polyvinylidene 

d i f l u o r i d e  m e m b r a n e s  u s i n g  i B l o t  ( L i f e 

Technologies). Membranes were treated with 

a blocking reagent (Roche Diagnostics, Basel, 

Switzerland) at room temperature for 1 h and were 

then incubated with rabbit polyclonal anti-S1PR1 
(1:500 dilution) at 4℃, with rabbit monoclonal 

antibodies against STAT3 (1:1000 dilution, Abcam, 

Tokyo, Japan), phospho-STAT3 (Tyrosine705) 
(1:1000 dilution, Abcam), p44/42MAPK (Erk1/2) 
(1 :1000  di lut ion;  Abcam),  p-p44 /42MAPK  

(Thr202/Tyr204) (1:1000 dilution; Abcam), Akt 

(1:5000 dilution; Abcam), p-Akt (Ser473) (1:1000 
dilution; Abcam) at room temperature for 1 h, or 

with mouse anti-β-actin monoclonal antibody 

(1:5000 dilution; Sigma-Aldrich, St Louis, MO, 

USA) at room temperature for 1 h. Membranes 

were then washed with Tris-buffered saline (TBS) 

for 30 min, incubated at room temperature (RT) for 

1 h with a horseradish peroxidase-conjugated anti-

mouse/rabbit IgG antibody (Roche Diagnostics), 

washed with TBS for 30 min, and finally treated 

with BM chemiluminescence Western blotting kit 

(Roche Diagnostics). Specific bands were visualized 

using LAS-1000 UVmini (GE Healthcare, Tokyo, 

Japan) and analyzed for density using Quantity One 

1-D analysis software, ver. 4.5 (BIORAD, Tokyo, 

Japan).

Quantitative reverse transcription PCR (qRT-PCR)
   Total mRNA was extracted using a RiboPure kit 

(Life Technologies) and quantified using NanoDrop 

1000;  cDNA was synthesized from extracts 

containing 1 μg of mRNA using a QuantiTect 

Reverse Transcription kit  (Qiagen, Hilden, 

Germany). Real-time PCR primers were purchased 

from Qiagen (QuantiTect Primer Assay) for human 

S1PR1 (QT00208733), S1PR2 (QT00230846), 

S1PR3 (QT00244251), S1PR4 (QT01192744), 

S1PR5  (QT00234178),  SK1  (QT01011927), 

SK2 (QT00085386), and RPS18 (QT00248682). 
Gene expression levels were analyzed in triplicate 

using an Applied Biosystems StepOne Plus PCR 

System (Life Technologies) with a QuantiFast 

SYBR Green PCR kit (Qiagen). PCR amplification 

was performed by exposure to 95℃ for 5 min 

to activate the HotStarTaq DNA polymerase, 

followed by 40 cycles at 95℃ for 10 s each and a 

combined annealing/extension step at 60℃ for 30 s. 

Owing to comparable PCR efficiency of reaction 

between target and endogenous reference (RPS18) 
genes, normalized S1PR and SK expression were 

calculated using StepOne software, version 2.2.2 
(Life Technologies) and 2－ΔΔCt analysis. Some 

data are expressed as mean ΔCt ± SEM (ΔCt = 

Ct value of target mRNA minus Ct value of 18S 

rRNA). Greater expression corresponds to smaller 

ΔCt values of mRNA.

S1PR1 knockdown by small interfering RNA (siRNA) 
transfection
   MO-LAS cells were seeded onto a 6-well plate 

(2.5 × 105 cells/well) and incubated for 24h. The 

cells were transfected with 5 nM Silencer Select 

Validated siRNA targeting S1PR1 s4448 (Ambion, 
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Life Technologies, Paisley, UK, #ASO0Z0KI), 

and 5 nM siRNA targeting S1PR1 s4449 (Ambion, 

#ASO0Z0KF), 5 nM glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) siRNA (Ambion, 

#ASO0YFP1), 5 nM non-specific siRNA (Ambion, 

#ASO0YGGG) and negative controls using 

Lipofectamine RNAiMAX reagent (Invitrogen, 

Carlsbad, CA, USA, #1687504) according to the 

manufacturer’s instruction. The knockdown was 

confirmed 24 h and 72 h after transfection by qRT-

PCR and WB, respectively. After transfection for 72 
h, cells were harvested and used for further assays. 

Cell migration assay
   Chemotactic cell migration assay was carried out 

using Transwell chambers (Corning, NY, USA) 

with an 8 μm pore polycarbonate filter insert. MO-

LAS (2.0×105 cells/well) cells were seeded in the 

upper inserts with DMEM. The lower compartment 

was supplemented with reagents tested. 20 h after 

incubation, cells remaining in the upper chamber 

were wiped off with a cotton swab, and cells that 

had migrated to the lower chamber side of the filter 

were fixed in methanol for 30 sec and stained with 

0.05% toluidine blue. The filter was removed, the 

stain was solubilized in 0.1 mL of 10% acetic acid, 

and the color intensity quantitated by an ELISA 

reader at 630 nm. The cells on the lower surface of 

the filters were fixed with methanol and stained with 

toluidine blue for 30 min as described elsewhere20）.

Wound healing assay
   A wound healing assay was performed for 

measuring random cell motility. MO-LAS cells 

were cultured in a 60 mm tissue culture dish 

(FALCON) at 2.5×106 cells/dish as confluent 

monolayers. The monolayers were incubated in 

serum for 6 h and wounded by drawing a line across 

the well with a 1 mL standard pipette tip, separated 

by a 300 μm thick wall. The wounded monolayers 

were then washed twice with serum-free media to 

remove cell debris and incubated in reagents tested. 

The cell-free wound area was recorded at indicated 

time points using the JuLi Br, Live cell analyzer 

(NanoEnTek Inc, Seoul, Korea) for 24 h. The wound 

healing effect was calculated as the percentage of 

the remaining cell-free area compared with the area 

of the initial wound.

Effects of FTY720-P on cell survival of MO-LAS 
cells
   A 100 μL aliquot of MO-LAS cells (1 × 106) 
from each sample was centrifuged and re-suspended 

in 100 μL apoptosis buffer added to 5 μL Annexin 

V (conjugated with Alexa Fluor® 488) and incubated 

at RT in the dark for 20 min. Samples were then 

centrifuged and re-suspended in 100 μL of the same 

buffer with 1 μL PI (Propidium Iodide) added at RT 

in the dark for 5 min and analyzed by Tali® Image-

Based Cytometer (Invitrogen). For each analysis, a 

dot plot and real percentages have been elaborated 

with the Attune Cytometric software (Invitrogen).

Statistical analysis
   Data are expressed as mean ± standard error 

of mean (SEM) of three determinations. Student’s 

t-test was used for statistical analysis. A value of 

p < 0.05 was considered to be significantly different 

from controls. 

RESULTS
Strong expression of S1PR1 in angiosarcoma cases
   We investigated the expression of S1PR1 in five 

cutaneous angiosarcomas by immunostaining 

formalin-fixed, paraffin-embedded (FFPE) sections. 

Tumor cells of all five cases showed membranous 

and cytoplasmic S1PR1 staining as observed 

previously17）. Interestingly, immunostaining for lung 

metastatic lesion of autopsy sample showed strong 

expression of S1PR1 as well as CD31 (Fig. 1). 
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Expression profile of S1P receptors in MO-LAS cells
   A comparative study of S1PRs and SK expression 

were performed by qRT-PCR. S1PR1 mRNA was 

more abundantly expressed than other S1PRs (Fig. 

2). 

Fig. 1
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Fig. 1.  Immunohistochemical expression of S1PR1 in an autopsy specimen of metastatic angiosarcoma of lung of a 61-year-old 
man. Formalin-fixed and paraffin-embedded lung tissue serial sections were immunostained. The metastatic lesion is nodular and 
composed of spindle cells having a large nuclear-to-cytoplasmic ratio (A: hematoxylin and eosin stain). The spindle cells exhibit 
strong signals for CD31 (B) and S1PR1 (C). (b): Bronchiole
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Fig. 2.  Results of qRT-PCR for mRNA expression of S1PR, 
SK1 and SK2 in MO-LAS cells cultured for 6 days. ΔCt 
values represent mean ± SEM of triplicate assay.

Table 1. Results of qRT-PCR showing effects of S1PR1 siRNA transfection on mRNA expression of MO-LAS cells

S1PR1 S1PR2 S1PR3 S1PR4 S1PR5 GAPDH

non-specific siRNA 0.95 ± 0.02 0.92 ± 0.03 0.88 ± 0.02 1.12 ± 0.05 1.18 ± 0.06 0.87 ± 0.07

S1PR1 siRNA s4448 0.39 ± 0.07** 0.86 ± 0.09 0.93 ± 0.05 1.35 ± 0.04 1.27 ± 0.03 0.81 ± 0.09

GAPDH siRNA 1.06 ± 0.05 1.27 ± 0.09 1.12 ± 0.01 1.56 ± 0.01 1.34 ± 0.10 0.44 ± 0.03**

** indicates p < 0.001 vs. the other two groups 

24h after transfection, S1PR1 expression was decreased by S1PR1-specific siRNAs as compared to GAPDH siRNA (positive control) and 
non-specific siRNA (negative control). The relative gene expression level was normalized to RPS18 and is presented as the relative amount of 
the group without transfection. Data expressed as mean ± SEM. 

Effect of selective knockdown of S1PR1 on 
migration of MO-LAS cells
   The effect of transfection of siRNA targeting 

S1PR1 on the expression of S1PR1 in MO-LAS 

was assessed by qRT-PCR at 24 h and WB at 72 
h after transfection. Transfection with the siRNA 

targeting S1PR1 significantly reduced both mRNA 

and protein levels of S1PR1 as compared to that 

observed after transfection with non-specific siRNA 

at 24 h and 72 h post-transfection, respectively 

(Table 1, Fig. 3A, B). 

　The functional consequences of MO-LAS 

transfected with siRNA were assessed on a 

Transwell migration assay, which measures 

chemotaxis across 8 μm polycarbonate filters that 

separate the upper and lower chambers (Fig. 4). 
The addition of 0.5% FAF-BSA containing 1 μM 

or 5 μM S1P in lower chamber promoted greater 

cell migration (141 ± 4.8%, p < 0.001 and 156 ± 
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2.48%, p < 0.001) as compared to that observed 

with 0.5% FAF-BSA, respectively. The addition of 

10% FBS in the lower chamber promoted migration 

more (179 ± 3.66%, p < 0.001 vs. 0.5% FAF-

BSA). By selective knockdown of S1PR1 with 

targeted siRNA, the increase in migration induced 

by 1 μM S1P (139 ± 4.00% vs. 109 ± 5.16%, p < 

0.003), 5 μM S1P (150 ± 3.54% vs. 130 ± 1.90%, 

p < 0.002), and 10% FBS (172 ± 7.46% vs. 157 
± 3.05%, p < 0.002) was significantly reversed as 

compared to that observed after treatment with non-

specific siRNA. The siRNA transfection did not 

affect viability of MO-LAS cells (Table 2A). 

Effects FTY720 and FTY720-P on MO-LAS cell 
migration 
   In the next step, we examined the effect of 

FTY720, a S1PR1 modulator, and its active form, 

FTY720-P, on MO-LAS migration towards 10% 

FBS using a Transwell well migration assay. 

Addition of FTY720 or FTY720-P (Fig. 5A, B) into 

the lower chamber appeared to inhibit migration of 

MO-LAS cells towards 10% FBS. 

   Moreover,  we studied changes in S1PR1 
expression of MO-LAS pre-incubated with 

Fig. 3. 
(A) Western blot for S1PR1 protein expression in MO-
LAS cells, three days after transfection with S1PR1-specific 
siRNA. S1PR1 expression was significantly decreased after 
transfection with siRNA specific for S1PR1, as compared to 
that with non-specific siRNA. 
(B) Western blot analysis of effects of S1PR1-specific siRNA 
transfection on expression level of S1PR1 (S1PR1/β-actin) 
in MO-LAS cells. Specific bands were analyzed for density 
using Quantity One 1-D analysis software, ver. 4.5. Data 
represents mean ± SEM of three independent experiments. 
***p < 0.0001 compared to the control.
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Fig. 4.  Results of Transwell migration assay showing effects of S1PR1 knockdown on MO-LAS chemotactic cell migration. 
Transwell migration assay was performed 72h after transfection with siRNA targeting S1PR1. Cell migration was promoted by 
addition of 1 μM or 5 μM S1P in 0.5% FAF-BSA, or 10% FBS, when compared to that seen with use of 0.5% FAF-BSA only 
(control). After selective knockdown of S1PR1 with siRNA targeting S1PR1, the promoted migration toward 1 μM or 5 μM 
S1P or 10% FBS was significantly inhibited as compared with non-specific siRNA. Values (% absorbance) are mean ± SEM of 
triplicate assay. *p < 0.05 compared to the non-specific siRNA group.
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FTY720-P at the respective time points, because 

FTY720-P has been shown to induce internalization 

and degradation of S1PR1  and to work as a 

functional antagonist of S1PR121）. ICC analysis of 

a MO-LAS cell block with an anti-S1PR1 antibody 

revealed expression of S1PR1 on the cell membrane 

even when the cells were cultured in the presence 

of 10% FBS (Fig. 6A). Exogenous FTY720-P 

(100 nM) treatment at 37℃ for 30 min decreased 

cell membrane signals and increased vesicular 

localization signals of S1PR1. At 4 h after treatment, 

the signals were still observed on the cell membrane 

but most were observed as vesicular signals in the 

cytoplasm of perinuclear region. At 8 h, the signals 

were very faintly observed in cytoplasm. 

   To elucidate the mechanism underlying the 

inhibitory effect of FTY720-P on cell migration, 

we pre-incubated MO-LAS with culture medium 

Table 2. Effects of S1PR1 siRNA (A) and FTY720-P and JTE013 (B) on survival of MO-LAS cells

(A)

Live cells (%) Dead cells (%) Apoptosis (%)

non-specific siRNA 98 ± 0.79 1 ± 0.30 1 ± 0.61

S1PR1 siRNA s4448 97 ± 0.57 2 ± 0.30 1 ± 0.47

(B)

Live cells (%) Dead cells (%) Apoptosis (%)

Control 97 ± 0.55 1 ± 0.33 2 ± 0.60
FTY720-P (100 nM) 94 ± 0.88 4 ± 0.70 2 ± 0.49
JTE013 (100 nM) 98 ± 0.88 1 ± 0.49 1 ± 0.51
FTY720-P (100 nM) + JTE013 (100 nM) 98 ± 0.87 1 ± 0.30 1 ± 0.66

(A) MO-LAS cells were transfected with non-specific siRNA or siRNA specific for S1PR1. Eight hours 
post-transfection, apoptosis was analyzed by the Tali® apoptosis assay using Annexin V and PI. 
(B) MO-LAS cells were treated with FTY720-P (100 nM) for 24 h and/or JTE013 (100 nM) for 30 min, and 
assessed for apoptosis. Data expressed as mean ± SEM.
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Fig. 5B 

A B
Fig. 5.  (A) (B) Inhibitory effect of FTY720-P or FTY720 on chemotactic migration of MO-LAS cells in response to 10% FBS 
(control) or 10% FBS plus FTY720-P or FTY720. A dose-dependent inhibitory effect of FTY720-P and FTY720 are observable. 
Values (% absorbance) represent mean ± SEM of three assays. *p < 0.05, **p < 0.001 compared to the 10% FBS group.
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Fig. 6.
(A) Internalization of S1PR1 in MO-LAS cells after addition of FTY720-P (100 nM) in culture medium containing 10% FBS. 
S1PR1 signals were observed on cell membrane and cytoplasm on immunocytochemistry with anti-S1PR1 antibody 30 min after 
additional of FTY720-P. After 1h, S1PR1 was observed circular in the cytoplasm. After 4h, dot-like S1PR1 signals were observed, 
and by 8h S1PR1 signals had all but disappeared.
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Fig. 6C 

(B) (C) Inhibition of MO-LAS cell migration in Transwell toward S1P plus 0.5% FAF-BSA (control) or 10% FBS after 
FTY720-P pretreatment. MO-LAS cells were pre-incubated with FTY720-P for 4 h to 8 h before Transwell migration assay. Cell 
migration was evaluated at 24 h. Values (% absorbance) represent mean ± SEM of three assays. *p < 0.05, compared to the no 
treatment group (control).
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Fig. 6D
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(D) Effects of pretreatment with S1PR2-antagonist JTE013 on 
MO-LAS cell migration induced by 10% FBS. No promotion 
or recovery from inhibition of cell migration with FTY720-P 
was observed in MO-LAS cells pre-incubated with JTE013.  
Values (% absorbance) represent mean ± SEM from three 
assays. **p < 0.001 compared to the no treatment group 
(control).
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(E) Western blot results showing the effect of FTY720-P (100 
nM) on S1PR1 protein expression and on phosphorylation of 
p44/42MAPK (Erk1/2) (Thr202/Tyr204), STAT3 (Tyr 705), 
and Akt (Ser473) in MO-LAS in the presence of 10% FBS. 
Cells were exposed to FTY720-P for various times (30 min to 
8 h). 
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(F) Western blot analysis of time-dependent effects of FTY720-P (100 nM) on expression level of S1PR1 (S1PR1/β-actin) and 
phosphorylation level of p44/42MAPK (p-p44/42MAPK/p44/42MAPK), STAT3 (p-STAT3/STAT3), and Akt (p-Akt/Akt) in MO-
LAS cells. Specific bands were analyzed for density using Quantity One 1-D Analysis Software, ver. 4.5. Data represents mean 
± SEM of three independent experiments. *p < 0.05, **p < 0.001 compared to the 0min group.
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containing 10% FBS and FTY720-P and then 

examined its effect on cell migration. Pre-incubation 

with FTY720-P inhibited MO-LAS cell migration 

towards S1P and 10% FBS in pre-incubation time-

dependent manner (Fig. 6B, C). 

   S1PR1 has been shown to promote cell motility 

of endothelial cells while S1PR2 has the opposite 

effect22）. We also examined a possible role of S1PR2 
in the cell migration of MO-LAS cells by pre-

incubation with a S1PR2 antagonist, JTE013, for 

30 min and/or FTY720-P for 4 h. As shown in Fig.  

6D, no promotion or recovery from inhibition of 

cell migration with FTY720-P was observed in MO-

LAS cells pre-incubated with JTE013. Further, pre-

incubation of cells with FTY720-P and/or JTE013 
did not appear to affect cell viability (Table 2B).

   We further studied the effects of FTY720-P on 

S1PR1 protein expression and activation status of 

p44/42MAPK (Erk1/2), STAT3, and Akt on WB 

analysis. MO-LAS cells were exposed to 10% 

FBS containing FTY720-P (100 nM) for different 

durations of time (1 h, 4 h, and 8 h) (Fig. 6E, F). 

S1PR1 protein expression decreased in a time-

dependent manner, which correlated with IHC 

results. Interestingly, FTY720-P slightly inhibited 

phosphorylation of STAT3 but not of p44/42MAPK 

(Erk1/2) and AKT during this time.

Effects of FTY720-P on wound healing of MO-LAS
   The effect of S1P and FTY720-P on random 

motility of MO-LAS was assessed by wound 

healing assay and monitored by time-lapse video 

(Fig. 7). 10% FBS promoted cell migration, which 

was reflected in the higher rate of wound closure 

and 100% coverage of the scratched area. One 

micromolar S1P also covered 95 ± 2.3% of the 

scratched area at 24 h. 0.5% FAF-BSA-induced cell 

migration was slower as the associated coverage 

of the scratched area at 24 h was 75 ± 2.3% (p 

< 0.001). In contrast, FTY720-P inhibited cell 

migration, which was reflected in the lowest rate of 

wound closure (55 ± 1.9% (p < 0.0001)) at 24 h.
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Fig. 7
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Fig. 7.  Effects of FTY720-P on wound healing of MO-LAS. Cells were grown to a monolayer. A scratch wound was made. 
Images were taken using the JuLi Br, Live cell analyzer. FTY720-P treatment impairs MO-LAS scrape wound healing. Time vs. 
% confluence effect of serum, FAF-BSA (control), FTY720-P (100 nM) and S1P (1 μM) are shown. Almost complete closure 
occurred after 21 h for S1P (1 μM) plus 0.5% FAF-BSA or 10% FBS. FTY720-P (100 nM) significantly inhibited migration 
of MO-LAS cells and only 55% of wound closure was observed 24 h the treatment. Data represent mean ± SEM of three 
independent experiments. **p < 0.001, ***p < 0.0001 compared to the 10% FBS group at 24 h.
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DISCUSSION
   Although direct evidence of a relationship between 

S1PR1 expression and tumor dissemination has 

not been obtained in vivo so far, the relevance of 

S1PR1 expression to metastatic activity of tumors 

was suggested by recent clinicopathological studies 

of malignant lymphomas using IHC with S1PR1-
specific antibodies23－25）. In the present study, we 

examined the impact of S1PR1 knockdown on 

migration of angiosarcoma (MO-LAS) cells by 

Transwell assay. Expression level of S1PR1 in the 

angiosarcoma cells showed a positive correlation 

with cell migration induced by S1P or 10% FBS. 

These results underline the important role S1P/

S1PR1 axis on migratory potential of angiosarcoma 

cells.

   FTY720 (Fingolimod) has been used as an 

immune-modulator for treatment of multiple 

sclerosis26）. FTY720 has been shown to inhibit 

lymphocyte egress from lymphoid organs and 

induce lymphopenia in both mice and humans14，26）. 

FTY720 is phosphorylated in vivo by SK2 and 

converted to FTY720-phosphate (FTY720-P), 

which acts as a functional antagonist by inducing 

irreversible internalization and degradation of 

S1PR122，26）. In other words, FTY720-P appears to 

desensitize the lymphocytes to the S1P gradient 

between blood and tissue, and thereby, lead to 

sequestration of S1PR1-positive lymphocytes in the 

secondary lymphoid organs14）. 

   In the present study, FTY720-P induced S1PR1 
internalization and degradation in an angiosarcoma 

cell line, MO-LAS, even in the presence of 10% 

FBS. Surprisingly, FTY720-P inhibited chemotactic 

cell migration induced by S1P as well as that 

induced by 10% FBS containing S1P and multiple 

cytokines10，12）, at nanomolar concentrations that lie 

within the therapeutic range for multiple sclerosis. 

The results imply that FTY720-P-induced loss of 

S1PR1 expression on the angiosarcoma cell surface 

caused desensitization of S1P/S1PR1 signaling in 

the presence of the serum, and thereby, reduced the 

cell migration activity27）. 

   In the wound healing assay, > 50% of the 

scratched area was covered with MO-LAS cells 

after 24 h, even in the absence of extrinsically added 

stimulants other than FAF-BSA. This result implies 

that S1P and other factors, including vascular 

endothelial factor (VEGF), released from MO-

LAS induce random cell motility in an autocrine 

manner11，28）. MO-LAS showed a substantial level 

of SK1 expression and still constitutively activated 

p44/42MAPK (Erk1/2), Akt, and STAT3 post 16 h 

serum-starvation. However, the confluence rate 

of MO-LAS cells treated with FTY720-P plus 

10% FBS was lower as compared to that observed 

on treatment with FAF-BSA, which confirmed 

the potent inhibitory effect of FTY720-P against 

angiosarcoma cell migration. A possible explanation 

is that homeostatic activation of S1PR2 by serum 

S1P increased after down-regulation of S1PR1, and 

that led to a shift in S1P signaling balance from 

S1PR1 to S1P2, which suppressed the cell migration 

activity21，29）. However, such a possibility appears 

unlikely because the inhibitory effects of 100 nM 

FTY720-P were not reversed on pretreatment with 

a SIPR2-antagonist, JTE013, which has been shown 

to be effective in vitro as well as in vivo studies30）. 

Therefore, the functional consequence of FTY720-P 

against angiosarcoma cell motility appears to be 

based on modification of S1PR1 expression plus 

other unknown mechanisms. 

   S1PR1 has a crucial role in the persistent activation 

of STAT331）. Targeting of S1PR1 by administration 

of  FTY720  reduces S1PR1  expression and 

downregulates STAT3 activity in diffuse large B cell 

lymphoma (DLBCL), both in vitro and in vivo32）. 
Our clinicopathological findings also showed S1PR1 
overexpression in 16% of DLBCL cases; S1PR1 
expression correlated with STAT3 phosphorylation 

in fresh samples of the cases25）. The present study 

showed that FTY720-P at nanomolar concentrations 
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did not affect phosphorylation of p44/42MAPK 

(Erk1/2) or Akt, but induced a significant decrease 

in the phosphorylation level of STAT3, an effect 

that correlated well with internalization and 

degradation of S1PR1, as detected by ICC and WB. 

Because S1P/S1PR1 signaling activates STAT3 
phosphorylation31）, reduction in STAT3 activation 

level after FTY720-P treatment may be due to 

decreased expression level of S1PR1.
   FTY720 has been shown to be successful in 

preclinical antitumor studies in several cancers33）. 

Administration of FTY720 remarkably suppressed 

Bcr/Abl-driven leukemogenesis34）, prolonged the 

survival of mice with lymphoblastic leukemia/

lymphoma35）, and inhibited growth of mantle cell 

leukemia cell lines xenografted in SCID mice36）. 

More recently, FTY720 was shown to decrease 

S1PR1 expression and induce apoptosis in a canine 

hemangiosarcoma cell line37）. However, at least 10 
to 100-fold higher concentrations were required 

than those used for treatment of multiple sclerosis to 

obtain these effects. This implies that the inhibitory 

effects of FTY720 on tumor progression are not 

mediated through FTY720 to FTY720-P conversion 

but through direct suppressive effects of FTY720 on 

signals related to cell proliferation and survival, i.e., 

on the activation of PP2A that leads to suppression 

of p44/42MAPK (Erk1/2), Akt activation34－36）, and 

on inhibition of SK1 that produces S1P33）. 
   In conclusion, our study demonstrates that 

S1PR1 is abundantly expressed and is functionally 

activated in MO-LAS cell migration through S1P/

S1PR1 signaling. FTY720/FTY720-P inhibited 

not only S1P-induced but also serum-induced cell 

migration of angiosarcoma cells at clinically used 

concentrations. The present results suggest the 

potential of the S1P/S1PR1 axis as a therapeutic 

target for angiosarcoma. 
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