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ABSTRACT. The purpose of this study is to develop a method of
estimating transition probabilities among the disease “states” indicating
its severity for the chronic diseases. This method was applied to the
analysis of the natural history of patients with coronary heart diseases.
The transition process among “states” is assumed to be expressed by
a time discrete simple Markov process. The severity of the disease was
classified into 3 “states”, i. e., S; : single vessel disease, S, : double vessel
disease, S; : triple vessel disease. Estimation of the transition probabilities
was made by the maximum likelihood method, using the follow-up data
of the numbers of the survival. The accuracies of the estimated values
are evaluated by the asymptotic variances. From the present study the
followings were observed : (1) the accuracy of the curve fiitting for the
follow-up data was satisfactory, (2) the catenary model was the most
prominent in the sense that an information criterion AIC is minimum, and
(3) there may exist the reversible transitions among some disease states.

1. Introduction

In medical care of the chronic disease, it is necessary to know the stage
of the disease relating to its severity, since the observation of transitions among
stages provides an important information on progression or regression of the
disease. For the evaluation of transitions, it is essential to monitor changes
of the stages for patient groups repeatedly at regular time intervals. These
monitoring, however, is not always an easy task, especially in such cases that
the observation is invasive to patients and/or the method has technical difficulties.
An example is the monitoring of vascular lesions in ischemic heart disease
(IHD) ; IHD is frequently classified into single, double and triple vessel diseases by
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selective coronary angiography. However, invasiveness of coronary angiography
prevents its repetitive use at regular time intervals.

In the present study, we proposed a method of estimating the transition
probabilities among stages of the disease by a compartmental model. An
application was made to analyze the prognosis of IHD.

In the use of a compartmental model in clinical care, compartments.
correspond to the stages of the disease and the amount of a tracer in a com-
partment to the number of patients belonging to a stage. Transitions of tracers
(patients) among compartments (stages) occur stochastically. In this sense, the
compartmental model for evaluating the prognosis of the chronic disease can be
considered as a common framework to the Markovian process. Several reports
have indicated that the natural history of chronic disease could be well modeled
by the Markovian process in most cases'™®. In their studies, long-term prognosis.
was estimated by the transition probabilities. However, transition probabilities
are not always easy to obtain as already mentioned.
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Fig. 1. Reversible 3 compartment model with an absorbing point (death). Compartments
correspond to “disease states” and the amount of tracer to “the number of patients”
belonging to each state. This kind of compartmental model can be considered as a
common framework to Markovian process.

In contrast to the applications of the Markovian model so far, this paper
presents a method of estimating transition probabilities among stages of the
disease from the survival data (data of death). According to the terms employed
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in the Markovian model, we use “disease states” instead of “stages of disease”
hereafter. The “disease states” are classified into “single”, “double” and “triple”
vessel diseases and “death”. Three different types of models (one way, catenary
and reversible) were used for the analysis (see Fig. 2) and the transition pro-
babilities among the states were estimated by the maximum likelihood method.
The accuracy of identifications was evaluated by asymptotic variances and an
information criterion (AIC)®.

(a) One way model (0 model)
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Fig. 2. Three different compartment (Markovian) models used in the present study. The
compartments (states) S, D and T denote single, double and triple vessel disease,
respectively. The paths to the outside of the system imply death.
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2. Formulation of Problem

Suppose that patients with a chronic disease are initially classified into
several patients groups —disease state— by the first diagnostic procedure and
that the survival data for each patient group are obtained every year for many
years. Classification of the disease state cannot performed repeatedly. The
problem is to estimate transition probabilities P;; among disease states from
the survival data. Here P;(i2:0) indicates the transition probability from state
Jj to state i for a year and P,; is the death probability from state j-  The matrix
(P;;) is assumed to be time-invariant.

Consider that there are initially N; (0) patients in state i, i=1, ++- - n, and
that N;(j), j=1, -+ » t, is the number of survival patients after j years who
initially belonged to state i. In other words, N; (k)-N; (k+1), k=1,------ , t-1,
represents the number of death during the year k~k-+1, and N; (t) the number
of survival patients in ¢th year.

Our problem is the estimation of the transition probabilities {Pi;} among
disease states from the observation of Nj (j), i=1, ----- , D, j=0, ... , t.

3. Likelihood Function for Survial Data

In this section, we derive the expression for the likelihood function to
estimate P;; when the survival data are given by the form described in the
previous section.

First, we derive the recursion formula to get the probability of death
Qi (s) of a patient initially been in state i, during the period from (s—1)th
year. to sth year. Since Q; (1) implies the probability of death for the first one
year, it is simply written as,

Qi(1)=Py, i=1, 2, ---.- . n (1)
Since Q; (2) is the probability of death by way of any one of the states I,
2, ceeeen , and n from the initial state i, we have,

Q=) QD Py

In the same way, the recursion formula is given by, -
Q)= ) Qu(s—1)Py )
k=1

The probability of a patient being alive for ¢ years is written as
QUO=1-) Q) (3)
s=1

Using Eq’s (1)-(3) and considering the independent nature of the Markovian
process, the likelihood function for the survival data of patients initially belonged
to state i is expressed by
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- N; (0) Ni(1) ... N; (t—1)
b= (Ni ©-N, (1))(Ni (D—N; (2)) (Ni t—1)—N; (t))
xQ (YN O =N (1) o ) Ni ()=N:(2)

N;i (t—1)—N;(t) = ,,N;(t
...... Qi(l) ( ) () Qi(t) () (4)
As the joint likelihood function L is the product of L;, L, ------ ,and L,, L
is given by

L=L, Ly L, (5)

4. Estimation of Parameters

Now our problem is to estimate P;; so as to maximize L in Eq. 5.
However, P;; has the constraints based on the statistical nature of probabilities,
i. e.,

ijJ:l.
k=1

ngij _é_l, i=0, 1, -- ... , n, J= , eeees , n (6)

In order to remove the constraints in Eq. 6, transformation of parameters from
P;; to «a;; was made. It follows,

n

Pij=aij/2aij’ i—_—-O’ l, ...... , n, J=1, 2’ ...... , (7)
k=0
where
aoj':l, _]=1, 2, ...... , h

Then estimate of parameter P;; are obtained by solving an ordinary non-linear
optimization problem®. For this problem, we adopted the simplex method of
Nelder and Mead®, because it can create its own scaling factors and converge
for a wide range of starting points.

5. Evaluation of the Accuracy of Estimates -

In the estimation of parameters, it is important to evaluate the accuracy
of estimates objectively. For this evaluation, we used the asymptotic variance
which was obtained in the following manner.

Consider a generalized Fisher’s information matrix I (Ix;)pxp, Where

_ o
A E<———a o HllnL) (8)

and L is the likelihood function given in Eq. 5. As a generalization of the
Cramer-Rao inequality, it can be shown that the following holds: for any

unbiased estimator (9~1, ------ , gp) of (01, -+---- , 0p) which are equivalent to
(Po1, Pryy woveee ) in our case, let V be the variance-covariance matrix, V must
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be larger than or equal to the matrix 17! in the sense that V-I"! is non-

negative definite. For large samples the diagonal of I~! provides an estimator

of variances of the maximum likelihood estimators of the parameters.
Substituting Eq. 4 into Eq. 5 and taking the logarithm, it follows,

log L= ) (Ni (s—1) = Nic(5)) 10gQu (5) + Nic (1) 1ogQ (t)]

k=1 s=1

+ (the term independent of @’s) 9
Partially differentiating Eq. 9 with respect to ©;, we have

alog L 2 [Z‘(Nk (s—1)—N(s)) 9Qx (s)

Qx (S) 803

N () 39Q:(5) 10
Qx (t) 4 00; (19)

Partial differentiation of Eq. 10 with respect ©; gives
OlogL Y \:s 1 9°Qx (s)
g Ve~ ~—D=N
50,50, = 2 |, M 6=D =N {65 o,

_ 1 2Q(s) 2Qu(s)\ 1 v 0%Qu(s)
Qu (8)* 815a 81;21 } Nk(t){ﬁ(t)g: aeigej

D 9Qu(s) T 9Qx (5)
QP4 20, 4 o0, }] an

Taking the expected value of Eq. 4 and making use of the following relations,
<Nk (S—l)>_<Nk (S)>=Nk (O) Qk (S>s S=19 23 """ s t_l
<Ni ()>=Ni (0) Qi (1) (12)

we have,

3 N1 9Que) , 1 T OQu(s) T oQu(s)
IIJ";NK (O){gl %G 90,00, T G 4 20, A 20, |

(13)
Sinee O, ©,, ----- correspond to transition probabilities in our problem, the
partial derivatives 0Q; (s)/960;, -+ can be calculated by the following

recursion formulae, which are obtained by partial differentiation of Eqgs. 1 and
2 with respect to 0;

0Qi(1) _; 2 () _ -
P % (b, k) (o, 1)

aPoi ’
9Q: () _ T 9Pu Qi (s—1) "
00; L a6 Qi (s— +ZP aeJ (14
t—2 3, , 8, 1, k=1,2 ... , n
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6. Comparison of Models

In this papsr we proposed three types of models for fitting the survival
data by the Markovian process. For a measure of fittness of a model, we
considered an application of criterion called an information criterion (AIC)"®
which was introduced by Akaike and which has been successfully applied for
the identification of a statistical model.

Let N, N, - , N; be the number of 7 independent observations of
a random variable with probabilility density function f (N/6). AIC is defined as

AIC (0) = —22 Inf (N;/8) +2k (15)

= —2 In (maximum likelihood) + 2k
‘Where k is the number of independently adjustable parameters within the

model and @ is the vector of the maximum likelihood estimates of 6.
The model corresponding to the minimum AIC is selected as the optimal one.

7. Survival Data of Ischemic Heart Disease

An analysis of the patient survival data in a chronic disease is very
important for the estimation of the natural course of the disease of the com-
parison of effects of several treatments. This is also true for ischemic heart
disease (IHD) and many follow-up studies for THD have been made.

In 1973 Bruchke et al.” published a report on consecutive nonsurgical
cases of IHD followed for 5-9 years. In their study, 553 patients were
classified initially into three categories, by finding of selective coronary
angiography : single vessel diease (S), double vessel disease (D) and triple
vessel disease (T). The number of patients survived was followed in each
patient group for 5-9 years.

In this study, we used Bruschke et al’s data for estimating P;; in the
Markovian model, since the number of patients followed was larger than others’
and their data are appropriate for an analysis of natural history of IHD.

8. Results -
8. 1 Estimation of Transition Probabilities
(1) Reversible model

The annual transition probabilities among S, D, T and death calculated
in the reversible model are shown in Fig. 3. Annual transition probabilities
from the S, D, or T state to the death were 0.026, 0.090 and 0.220, re-
spectively. These values indicated that the mortality in ischemic heart disease
rises steeply with an increase in the number of affected coronary arteries.
This model suggested that transitions from D to S or to T occur with relatively
high probabilities, 0.48 and 0.43, respectively, while the transition from S to
D or to T occurs with low probabilities.

Results of curve fitting for the survival data by the reversible model were
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Fig. 3. Comparison of the Bruschke et al.’s survival data with those estimated by
applying the reversible model. The solid curves represent estimation results and
the symbols O, A and [] indicate Bruschke et al.’s data. The letters S, D and
T denote the patients groups who initially belonged to single, double and triple
vessel diseases, respectively.
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Fig. 4. Estimated values of transition probabilities in the reversible model.
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shown in Fig. 4. Three curves indicate the mean survival values estimated
for patient groups belonged initially to states S, D and T, respectively. These
curves were in good agreements with the data by Bruschke et al.® For example,
the 5 years survival rate in Bruschke et al.’s data were 84.8% and 44.2% for
the initial disease states S, D and T, respectively. while the estimated values
were 86.4%, 63.2% and 42.5%, respectively.
(2) Catenary model

The transition probabilities obtained in the catenary model were shown in
Fig. 5. Although the path between S and T is neglected in the catenary model,
the transition probabilities were almost compatible with those in the reversible
model.  The accuracy of survival curve fitting was also satisfactory.

0.019 0.426
—_— —
—— R a——
0.446 0.314
0.026 . 0.090 0.226
Death Death Death

Fig. 5. Bstimated values of transition probabilities in the catenary model.

(3) One way model ,
The one way model does not include the reversible-recovery-paths of tran-
sitions, i. e., T»D, T—S and D-»>S. Transition probabilities calculated in this

0.030

0.0011/ \‘o.oooos

0.0002

0.076 0.14

Fig. 6. Estimated values of transition probabilities in the one way model.
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model are shown in Fig. 6. The transition probabilities among S, D and T showed
lower values comparing with those in other two models, while probabilities.
from S, D and T to death were almost the same as the results in other models.
The curve fitting of survival data by the model was less satisfactory.

8.2 Comparison of Three Models

The accuracy of the transition probabilities obtained in each model was.
evaluated by asymptotic variances. The results are shown in Table. In general,
the asymptotic variance in the catenary model showed the smallest value, com-
paring with the variances in other two models.

The values of AIC relative to that of the one way models were shown in
the same table. The value of catenary model is the smallest.

These results indicated that the catenary model is the most approriate for
the simulation of the survival data.

9. Discussion and Concluding Remarks
By using three compartment models, we analyzed the progression and

TABLE Estimated values of transition probabilities with the square roots of
asymptotic variances in three different compartment (Markovian) models. The
values of AIC are given at the bottom of the Table. Note that both AIC value
and asymptotic variance of each parameter are the smallest in the catenary model.

O Model C Model R Model
Par 0.031 +0.011 0. 026 4-0. 009 0.026 4-0.011
Pa1 0.001 4-0. 65 0.019 +0.04 0.018 +0.31
Pa1 0.000048 --0.32 - 0.0005 +0.18
Doz 0.0763 +0.013 0.902 40.019 0.0904 +0.019
jun N 0. 446 +0.23 0.480 40.28
Dsz 0.0002 +0.052 0.426 +0.25 0.428 +0.29
Pos 0.144 +0.015 0.226 +0.033 0.225 +0. 039
Pis - - 0.0419  40.30
D23 - 0.314 +0.13 0.220 4-0. 68
AIC 0 —24 <20

regression of ischemic heart disease (IHD) in terms of single, double, triple
vessel diseases and death. The estimated survival data showed good agreements
with Bruschke et al.’s data except the case of one way model. This suggested
that the survival data of IHD could be modelled by a Markovian process.

Comparing the reversible model with the catenary, we selected the catenary
model as an optimal one, since the AIC value and asymptotic variances were
lower in the catenary model. The results that the estimated transition proba-
bilities for S = T showed low values, will also support this selection.

On the transition probabilities in the catenary meodel, it is noted that the
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values of the paths from D to T and from T to D were relatively high.
These indicate that regression of arterial coronary lesions may occur in the
chronic course of ITHD. However, the regression will not necessarily imply
a morphological improvement of the vascular lesion. It will also include
a functional improvement. Progression of the disease will be rapid from D
to T, since its transition probability was higher than that from S to D.

From the present study, it was indicated that the Markovian model provides
useful information on evaluating the prognosis of chronic disease on the basis
of survival data.
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