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Introduction

In [2], a weighted least squares problem of finding the vector 6 in the parameter
space © which minimizes gl[F(x,«, 01 —F(x;, )1 MF(x;, )—:)? over © is discussed
and the existence theorem is proved. In the present paper, we consider a general
weighted least squares problem involving that of [2] as a special case. The method
used in [2] to prove the existence theorem can be also applicable to our case and
a sufficient condition for the existence of an optimal solution is given in § 3. In
§ 4, the existence theorem (Theorem 2) is applied to a least squares problem with

specified weight function.

§ 1. Preliminaries and notations

Let 6 be a domain of the p-dimensional Euclidean space R’. Denote by d(6, 6’)
the distance between 6 and a nonempty subset 6 of R”. We regard {o} as a
boundary point of 6 if 6 is unbounded and define d(6, {oo})=d(¢, {0})~'. For each
6e®, let F(x, 6) be a real valued function defined on the interval I=(q, b) (—oo=<g
<h=) in the real line R such that I is independent of 6, 0<{F(x, 6)<1, l]_)rp F(x, 9)
=0 and }g{l F(x, 6)=1. We always assume that {x;} and {y;} are sets of m real
numbers such that a<lw;<x,<-<#,<b and 0<y;<y,=<--=<y,=<1. For each u€(0, 1)
and 0¢6, we define functions Q) and Q) by

Qui=5. wwu—y0? and QOI=3, w(F(x;, OXF(x;, 0)=:F,

where w(x) is a positive differentiable function defined on (0, 1) such that:
amn Ll};l} w(u)=}‘i§ w(n) =00,

(1. 2) Tim w?ww) and m (1 —w)2w(w) are finite.
%o %
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We consider the following extremum problem which is called the least squares
problem :
(P) Choose f¢86 so that § minimizes Q(6).
Our main purpose is to prove the existence of an optimal solution of the problem
(P). Throughout this paper we always assume that F(x, §) can be written as

t(x, e)
F(x, 0)= j fw)dv,

where f(v) is a positive integrable function on R and #(x, 6) is a function on Ix6
satisfying the following conditions :
(1. 8) #(x, 0) is continuous in @ for fixed # and is strictly increasing in x for fixed 6,
(1. 4) {#x, 6); 0eO) =(—oo, ) for each x¢],
(1. 5) The boundary 86 of € is decomposed into two disjoint nonempty subsets 6,

and 6, such that for x, &' eI with x#2, lelrg inf{|#x, O)—x’, 0)]; 66 and d(@, 61)
>+o

<e¢} =00 and el})r)(rg sup{|tx, O)—t’, 0)]; 6e6 and d(§, 6)=}e=0.

§ 2. The representation of the‘s-boundary of F(O)

Let S be a nonempty subset of R”. We define a subset 8:S of R” which is called
the s-boundary of S as follows: A point ze R” belongs to 8,5 if and only if z ¢ S
and there exists a sequence {z:} in S which converges to z. It is clear that 9,5=
S\S, where S is the closure of S. Let F(6) denote the row vector with components
F(x;, 6) and define the line segment L; (1=i=m) as {z=(z1, 22, -, 2Zm) € R™; 2;=0
(G<i), 0=z:=1 and z;=1 (<{j)} and the line segment L, as {z=(21, 23, ***, 2Zm) € R"™;
Z1=2s="=2n and 0=z;=<1}. For each xe/ and ve R, we define a subset S(x, v) of
6 by Sz, 1)={0€6; t(x, )=v}. Hereafter we always assume that
2. 1) 8:8(x;, ©)NO1+¢ and 8,5(x;, ©)NG*¢ for each i and v.

Note that the image F(©) of  under F is a bounded subset of R". Now we
show that 8,F(6) can be represented by Li{(0=i=m).

THEOREM 1. 0.F (6)=’,LZJ0L.~.

Proor. Put L='.L§0L.~. Tt should be noted that LNF®©)=¢. At first we shall show

LCa,F®). Let z2=(21, 25, ***, 2Zm) e Li{1=<i<m). Then z;=0 (<i), 0=2z;=<1 and z;=1
(<. In case 0<z:<<1, we can see by (1.4) that there exists 6, €@ such as F(x;, 6,)
=z;. Since 8:S(x;, t(x;, 0,)N6,#¢, there is a sequence {f,} in S(x;, #(x:, 6,) such
that }'1_’12 d(6,, 60)=0. For any ¢>0 we have
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(%), 6)—#(xi, 0)|=inf{|K(x;, O)—t(x;, 0)|; 6O and d(6, 8;)=<e}
for all # with d(6,, 61)<¢ and i+ Since H(xi, 04) is constant, (1.5) yields that {lt(x;,
0.)} converges to e, and consequently we have }lrg Hxj, 6x)=—00(;<7) and }3’& Hx;,
b)=c0 (:(j) by (1.3). This shows that F(6,)—z as n—oo, so that ze8,F(8). In case
zi=0, we can find a sequence {z.} in L\(Li-;ULi,) such that z,—z as n—o0 and a
sequence {6} in 6 such that F(6u.)—>2, as k—>o by the same reasoning as in the
case treated above. Take an integer %, so that |F(6u,)—2J<<1/n. Then it is easily
seen that F(6a,)—>z as n—oo, so that zed,F(6). By the same way we have z ¢ 8,F(6)
for the case z;=1. Finally we consider.the case z2=(21, 22, ***, 2m) € L,. We have
already shown zed,F(6) for the case that z;=0 or 1, so we may assume that 0<
z1<<1. Then by (1.4) we can find 6,¢6 such as F(x1, 6,)=2z1. Since 8:5(xy, #(x1, 6,))
N6,+¢, there is a sequence {8} in S(x;, #(x;, 6,)) such that ’llirg d(6,, 62)=0. For
any ¢€>0 we have

[#(x;, 6n)—t(x1, 0,)| < sup{|t(x;, )—t(xs, 0)|; 66 and d(6, 6;)<e)
for all n with d(6,, 62)<e and 7>1. (1.5) implies that Hxj, 00)—t(x1, 6,) as n—oo for
all j, so that F(6,)—z as n—>o and ze€9,F(®). Therefore LC3,F(6).

Next we shall establish the converse inclusion. Let ze8,F(0). Then there is a

sequence {f,} in 6 such that F(4,)—z as n—c and z ¢ F(©). This implies that the
sequence {f,} has no cluster point in 6. Hence we may assume that 'llirg d(0,, 61)

=0 or '1‘152 d(6s, 62)=0. Consider m sequences {#(x;, 6,)} (i=1, -, m), and suppose
firstly that one of these sequences has a convergent subsequence with a finite limit.
Without loss of generality we may assume that {#(x;, 6.} converges to a finite limit.
In case that Jilg d(6,, 62) =0, }ig Hxj, 04) = Ll_l;l;lo Hxi, 6,) for all j by (1.5). Thus
z2e L, CL In case that 1191‘1;10 (84, 61)=0, ”l}"gol Hxj, 0n)=—00(j<4) and Jlrorcl' Hxj, 0n)=
0 (1<(j) by (1.5), so that z e L; C L. Secondly we assume that each sequence {#(x,
6.)} (i=1, -+, m) has no convergent subsequence with a finite limit; so we may

assume that for each i, {#(x;, 6.)} converges to —o or o, The monotony of #x, 6)

in x yields that ZEQ] L; C L. Thus 8;F(6) C L, This completes the proof.

§ 3. Existence theorem

In this section we shall give a sufficient condition for which an optimal solution
of the problem (P) exists. Suppose that there is Z¢] such that for each veR,
there are mappings 6(r) and ¢(r) defined on (0, o) such that:
(3. 1) {8(r); 7€(0, )} C S(&, v) and d(6(r), 8;)— 0 as 7 — oo,
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(3. 2) #x, 6(r) is differentiable on (0, o) for each xel,
(3. 3) ¢(»r) is positive on (0, ©0), 1}3& qdt(x, 6(r)/dr = T(x) exists and T(x) is
decreasing in x. :

Let ue(0,1) and let F'(w) be the inverse function of the function ={ fs)ds..
We set -
) = 2/ D) | 35 =307, Gl = m 39T = 231 3 T — (m 197 T

7

-

- gy:z é T(x)u + i{ Yi ’Z’j}lyiz T(x:) — ‘i‘{ 9:i? ﬁi ; T(x:).

For each k(0=<k<m), denote by I:, the set excluding its terminal points from Lg.
Then we have

Lemma 1. For any sequence {0} in 6 with F(6.) — zsi,, (1=<k<m) as n— o, {Q0.)}
is an unbounded sequence if and only if the following condition (G is fulfilled :

(G >0 for some i with i<k or y;<l1 for some i with k<.

Proor. Let {6} be a sequence in 6 with F(6,)—z = (2, ', z,,.)eLok as n—> oo,
Then 2; = 0G<h), 0<z <1 and 2z = 1(k<. Put a(6) = 2w (Flr, 0, 0
—y:)? and b(B,,)=i:';ﬂw(F(x:, 0.))(Fx;, 0,)—yi)?. Assume that condition (G is fulfilled.
If >0 for some i with i<k, it then follows from (1.1) that w(F(x; 0))(F(xi, On)
—y)2—>00 as n—oo and hence a(f,) — o as n—> . Similarly we have that
b6,) — oo as n—oo if ;<1 for some i with k& <i. Since a(6,) + b0 = Q(60),
Q,)} is an unbounded sequence. Next assume that Q6 is an unbounded
sequence. Then either {a(6.,)} or {b(6.)} is unbounded. Assume that condition (G)
is not fulfilled; y: =0 (G<<k) and y; =1 <j). Then ald,)= Ew(F(xl, 0 (i, 0n)
and 00w = 3 wFlx, 0))(Flx;, 0) — 17 so that

lim a(6,) < (& — DTim ww(w) < e,

lim b(0n) < (m — k) Tim (1 = wiw) < e,
which imply that {a(6,)} and {6(6,)} are bounded. This is a contradiction. Hence
condition (G is fulfilled. This completes the proof.

Levma 2. Assume that there exist j and § such that 0<y;<yj»<1 and let @ e 0, 1) be
a solution of dQw)/du=0. Then there are mappings 0(r) and q(r) defined on (0, %) such
that (3.1), (3.2) and (3.3) are fulfilled replacing v by F~'(@) and that 11}90 q(r)dQO(r))/dr
= g@)G(@).

Proor. Put y=F-'z). Then there are mappings 6(r) and ¢() satisfying (3.1),
(3.2) and (3.3). We have by (3.2) '
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dQo(r))/dr = g{ (W' (F(xi, 6N F(xs, 0r) — 3:)? + 2w(F(xi, 60r)) (Fxi, 6)) — 3 fexs,
0(r)) dt(x:, 6(r)/dr (a.e.),
where w'(4) = dw(w)/du. This and (1.5) yield
3.9 1132 gdQ(r))/dr = .:21 W @@ — y:)? + 2w@) @ — y)} SE @) T(x:)

— 0@ 3w @ @ — 90/ w@ + 2 = yNSE @ T,
On the other hand, # is a solution of dQw)/du = 0 and w@ * 0, so that w’'@/w(@
= —233G — 3 /S @y Substituting this into (3.4), we see that lim gr)dQ(()
/dr = g@G@). Thus 6(r) and q(r) are required one. This completes the proof.

TuroreM 2. Assume that there exist j and 7 such that 0<y; <yy <1 and put
U= €0, 1); u minimizes Qu) over (0, Y. If Gw)>0 for some ueU, then the
problem (P) has an optimal solution.

Proor. It is easily verified that U # ¢ and each element of U is a solution of
dOw)/du = 0. Assume that there 1s @#e U such that G@ >0. By Lemma 2 there
are mappings 6() and ¢(r) defined on (0, ) such that {8(); 7€ (0, )} C 6 and
lim ¢(r)dQ(@(r)/dr >0, so that there is 6,6 such as Q@) <lim Q) = Q@).
We put K= {0¢6; Q06) =Q@0,)}. To prove our statement it suffices to show that
K is compact. Let {6, be any sequence in K and suppose that {f.} has no cluster
point in K. Then {6} has no cluster point in 6 since K is closed, and we can
find a subsequence {0/} of {64} such that F(6.) — z € 8,F(6) as n’ — o by the same
argument as in the latter proof of Theorem 1; so we may assume that F(6,) — z €

9,F(©) as n— . Note that all conditions (Cy), -+, (Ca) are fulfilled. If zeé)1 Io,,-,

then oo =’}ir£. Q(8,) <Q@,) by Lemma 1. This is a contradiction. If z= (4, -, )

€ Lo,,, then Q) =< Q(6,) <Q@), which contradicts #eU. Let z= (2, -, 2m) € 0sF(6)
\i(:JOLO;. Then 2, = =2m =0 or there is # (1 <k <m) such that z; =0 ¢ <k)
and z; =1 (B<1i. Since there is j such that 0<{y; <1, '}irglo Q6,) = o0 = Q(6,).

This is a contradiction. Thus K is compact. This completes the proof.

§4. Case: ww)=[u@—u)]™"

In this section we consider the special case: w@) = [u(l —w]. It is easily
verified that (1.1) and (1.2) are satisfied. In statistical applications this case often
arises (see [1] and [2].

Our main result in this section is the following:
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TurOREM 3. Assume that there exist j and j such that 0<y; <ypy» <1 and that
T(xm) — T(x1) <0. Then the problem (P) has an optimal solution.

To prove this, we prepare several lemmas. .

Lemma 3 (¢f. [2; Proposition 1]). Assume that 0<y; <1 for some i. Then there
exists a unique value @ of w which minimizes Q) over (0, 1). Moreover @ is a solution

of the equation

4.1 (m-— ZiZZ:ly.-)uz + gly.-z)u - g}ly.-z = (.

Lemma 4 (¢f. [2; Corollary 11. Let {ai} and (b} be increasing sequences of m real
numbers. Then
42 mBabi=(Sa) (S,
In particular, the strict inequality holds in (4.2) if am — a1 >0 and b, — by > 0.

Lemma 5 (¢f. [2; Corollary 2]). Let {ai}, {b:} and {ci} be increasing sequences such as
26:>0. Assume that ai=ay if and only if bi=b;. If (a—a)/(bi—b) =(Sa) /(L6

Jor every i and j such as b; + bj, then
@9 (e (Gbe) = (Hae (200,
In particular, the strict inequality holds in (4.3) if cw—c1>>0 and there exist i and § such
that bi+b; and (@i=ap [ 6i=b)> (L ai / (0.
LEMMA‘ 6. Let @ be a solution of dQw)/du=0 in (0, 1), let 5 be the mean value of
{9} and let ym — 91 >0. Then
(1) 3<1/2 if and only if 5 <<a<<1/2.
(ii) ¥y =1/2 if and only if 5 = a.
(i) 3> 1/2 if and only if 1/2 <<a<3.
Proor. Put A=31(2y~ 1, B=315? and hw) = —Au* +2Bu— B. Then 5 = (A
+ m)/2m and
Wy = —A(A + m)?*/4m? + B(A + m)/m — B
= A[4mB — (A + m)*]/4m?
= ALmB — (5 30°1/m?.
On the other hand, #(1/2) = —A/4, from which
@0 K = 4hA/D 90" = mBY/m
By Lemma 4, (E ¥)? —mB<0, so that (4.4) yields (i), (ii) and (iii).

Proor or TueEOREM 3. Let # be a value of # minimizing Q) over (0, 1), and put
ai = 2y,~ —1, bi =y,'2 and ¢; = —T(x;). Then
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m m m m m m
m Zy.- T — Z T(x:) Zy; = ( Z‘, a; ZC; —m Z aicd/2,
i=1 i=1 i=1 i=1 i=1 i=1
m m m m m m
m 23’:‘2 T(xs) — 21 T(x:) Zlyiz = Zlbi 12;0; —m 'ZibiCi’
= i= = i= = i=

g}’iéj’iz T(x:) — iiiyiz :Zlyi T(x:) = (éb: éc; —m ébiCi)/Z

m

+ (Zbiéaici - éaiébiﬂi)/&

=1

so that
264 = (3 (e —2(Sbou+ 336
= i= i=1 i=

—m ﬁla;c;)uz + 2m( iﬁbws)u -m éb;c; +K,
where K = Zmlbi il}a,-c,- - ildi én;:bici. By 4.1
4.5) 26@) = m[ —( _il aie)i + 2 g’"lb,-ma - g’"lb,-c.-] + K

Put G = —(3aie)a® + 23 bics — 3ibici. It then follows from (4.1) that (2a)G
=1 =1 i=1 i=

= K(1 ~ 2@). Since 26@) = mG + K,

4.6 (0)G@ =mK(G — 0.

In order to show that K> 0 we have only to verify that sequences {a:i}, {b:} and
{ci} satisfy conditions of Lemma 5. It is clear by our assumption that sequences
{a:}, {b:} and {¢;} are increasing, b = iZ:b;> 0 and ¢w —c1 >0, and a; =a; if and
only if b; = b;. In case that b; #+ b;, we put A = (a; — a;)/(bi — b;) = 2/(y: + y;) 0
and B =(31a)/(16) = m@§ — /b Tt is clear that B<A if 3=1/2. 1f 3>1/2,
it can be shown that %%/(2% — 1) and 3° < b/m by Schwartz’s inequality, so that *
/(2% — 1) < b/[m@25 — 1)]. Therefore m(25 — 1)/b<1. Since 3 #+ y;, yi +3; <2, SO
that B<CA. Thus K>0. Next we shall prove that G(#@ > 0. Since K> 0, by the

aid of Lemma 6 and (4.6) we conclude that G@) >0 if  + 1/2. In case that 7 =
1/2, we have by Lemma 6 and (4.5)

8G(1/2) = (4b — m>ga;c;.
It follows from Lemma 4 that Zmla,-c,-> 0 and (ii‘.lyi)2 <mb. Since gy,- =m/2, m/4
< b and hence 46 —m>0. Thus G(1/2)>0. Since é(ﬁ)> 0, our assertion follows

from Theorem 2.
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