1	Diagnosis of histological gastritis based on the Kyoto classification of
2	gastritis in Japanese subjects
3	- Including evaluation of aging and sex difference of histological
4	gastritis
5	
6	
7	Naoki Sumi ^{1*} , Ken Haruma ² , Tomoari Kamada ¹ , Mitsuhiko Suehiro ² , Noriaki Manabe ³ ,
8	Takashi Akiyama ⁴ , Akiko Shiotani ⁵ , Yoshiyuki Yamanaka ¹ , Sohachi Fujimoto ¹ ,
9	Toshihiro Takao ¹
10	
11	¹ Department of Health Care Medicine, Kawasaki Medical School, Kurashiki, Japan
12	² Department of General Internal Medicine 2, Kawasaki Medical School, Okayama,
13	Japan
14	³ Department of Endoscopy and Ultrasonography, Kawasaki Medical School, Okayama,
15	Japan
16	⁴ Department of Pathology, Kawasaki Medical School, Kurashiki, Japan
17	⁵ Department of Gastroenterology, Kawasaki Medical School, Kurashiki, Japan
18	

19	*Address	for	corres	pondence:
----	----------	-----	--------	-----------

- 20 Naoki Sumi
- 21 Department of Health Care Medicine, Kawasaki Medical School, 577, Matsushima,
- 22 Kurashiki 701-0192, Japan
- 23 Phone: +81 86 462 1111
- 24 Fax: +81 86 464 1166
- 25 E-mail: n.sumi@med.kawasaki-m.ac.jp
- 26
- 27
- 28 **Running title:** Histological gastritis by Kyoto classification
- 29
- 30 Word count: 2965
- 31

32 ABSTRACT

33	Objectives: The Kyoto classification of gastritis was established for diagnosing
34	Helicobacter pylori infection via endoscopic findings. We investigated the role of the
35	Kyoto classification of gastritis in the diagnosis of <i>H. pylori</i> infection and histological
36	gastritis in Japanese individuals. Moreover, the histological findings of gastritis in H.
37	pylori infection were examined based on age and sex differences.
38	Methods: We selected 561 patients aged 20–79 years who underwent gastroduodenal
39	endoscopy at our hospital between 2010 and 2018. Endoscopic biopsy specimens from
40	the antrum and corpus were used to investigate <i>H. pylori</i> infection and histology.
41	Endoscopic findings were based on the Kyoto classification of gastritis, and histological
42	findings were based on the updated Sydney System.
43	Results: Endoscopic findings based on the Kyoto classification of gastritis (H. pylori
44	positive, 303 patients; H. pylori negative, 258 patients, based on endoscopic findings)
45	had 98.8% sensitivity and 97.4% specificity for histological gastritis. In addition,
46	endoscopic findings in the three age groups (20-39, 40-59, and 60-79 years) had high
47	sensitivity and specificity. Atrophy and intestinal metaplasia were found only in the <i>H</i> .
48	pylori-positive group and progressed with age. Histological inflammation of pyloric

49	mucosa in the younger age group of <i>H. pylori</i> -positive patients was significantly higher
50	than that in the elderly group. Significant inflammation was observed in young women.
51	Conclusions: The Kyoto classification of gastritis can not only diagnose H. pylori
52	infection but also detect histological gastritis. Histological gastritis has varying
53	characteristics of inflammation, atrophy, and intestinal metaplasia, depending on age
54	and sex.
55	
56	Keywords: Helicobacter pylori, Gastritis, Kyoto classification of gastritis, Updated
57	Sydney System, Histology
58	
59	

INTRODUCTION

61	Warren and Marshall discovered Helicobacter pylori in 1983 and provided evidence
62	stating that <i>H. pylori</i> infection causes chronic gastritis, peptic ulcer, and gastric cancer
63	[1-3].
64	A standardised classification of gastritis was proposed by a working group at the
65	World Congress of Gastroenterology in Sydney in 1990 (Sydney System), and this
66	classification has been adopted as the updated Sydney System [4, 5]. Thus, endoscopic
67	and histological gastritis has been classified in recent years according to the updated
68	Sydney System.
69	Since February 2013, all H. pylori-positive patients have been treated under the
70	National Health Insurance in Japan. To perform eradication therapy, it is necessary to
71	confirm <i>H. pylori</i> infection by endoscopic findings, and additionally, a urease, serum
72	antibody, stool antigen, and urease breath test is performed. Moreover, it is necessary to
73	exclude organic diseases using endoscopy, such as gastric cancer. Therefore, it is
74	important to evaluate <i>H. pylori</i> infection using endoscopy. We recently established the
75	Kyoto classification of gastritis to diagnose <i>H. pylori</i> infection using endoscopy in the
76	Japanese population [6].
77	Ever since the Kyoto Classification of Gastritis has been established, there have been

78	many reports of <i>H. pylori</i> infection and background gastric mucosa [7-10]. However,
79	the association between endoscopic gastritis diagnosed by the Kyoto Classification of
80	gastritis and histological findings has not been investigated. This study aimed to
81	examine whether histological gastritis can be diagnosed using the Kyoto classification
82	of gastritis. In addition, we examined age and sex differences in the histological
83	findings of gastritis.
84	
85	MATERIALS AND METHODS
86	Patients
87	We enrolled patients aged 20–79 years who underwent upper gastrointestinal
88	endoscopy at Kawasaki Medical School Hospital between January 2010 and September
89	2018. During the study period, 1,395 patients underwent biopsies of the gastric antrum
90	and corpus of the greater curvature. We excluded patients who met the following
91	criteria: the use of nonsteroidal anti-inflammatory drugs, antacids, H2-receptor
92	antagonists, proton pump inhibitors, rebamipide (2-(4-chlorobenzoylamino)-3-[2-(1H)-
93	quinolinon-4-yl] propionic acid), immunosuppressors, immunomodulators, or
94	antibiotics during the month preceding endoscopy; a history of gastric surgery; pregnant
95	during the study period; a history of systemic conditions, such as collagen disease,

96	inflammatory bowel disease, autoimmune gastritis, eosinophilic gastroenteritis, acute
97	gastric mucosal lesion, portal hypertensive gastropathy, or Ménétrier disease; presence
98	of gastroduodenal lesion, such as gastric cancer, gastric adenoma, or peptic ulcer at the
99	time of endoscopy; or a history of treatment for <i>H. pylori</i> infection. Patients who were
100	not Japanese were excluded because of the perceived variations in the type of gastritis
101	compared with Japanese patients. Finally, we enrolled 561 patients (243 men and 318
102	women; average age, 50.1 years) who underwent upper gastrointestinal endoscopy
103	(Figure 1).
104	The gastric mucosa was observed by endoscopy, and the presence or absence of H .
105	pylori infection was diagnosed based on the Kyoto classification of gastritis [6]. Scopes
106	were restricted to the GIF240 and GIF260 series of Olympus Co. (Tokyo, Japan) and
107	EG-530, EG-580, and EG-590 series of Fujifilm Co. (Tokyo, Japan). At least two
108	biopsy specimens (one from the great curvatures of the antrum and one from the great
109	curvatures of the corpus) were used to assess the status of <i>H. pylori</i> infection and
110	histological gastritis. We examined whether the findings of <i>H. pylori</i> -positive or <i>H</i> .
111	pylori-negative patients diagnosed by the Kyoto classification of gastritis reflected the
112	histological findings of gastritis.
113	The study was approved by the Ethics Committee of our university (approval

114 number: 3319-3), and the study was conducted according to the principles of the

115 Declaration of Helsinki with the study participants' understanding and consent.

116

117 Assessment of endoscopic findings

118 All patients were evaluated using endoscopy by three Japanese endoscopists (NS,

- 119 KH, and TK) who were unaware of the symptoms, laboratory data, histological reports
- 120 of biopsy specimens, and *H. pylori* infection status according to the Kyoto classification
- 121 of gastritis criteria [6]. The endoscopic findings were evaluated using white light images
- 122 without the magnifying tool, and disagreements were resolved through discussion
- among the three endoscopists. The degree of corpus atrophy was classified as C1 (none)
- 124 to O3 (very severe) according to the Kimura–Takemoto classification [11]. C2-graded
- 125 atrophic findings, diffuse redness, nodular gastritis (NG), swelling of the folds, and
- 126 intestinal metaplasia were defined as *H. pylori* infection.
- 127

128 Assessment of histological gastritis

- 129 Gastric biopsy specimens were obtained during endoscopy and histologically
- assessed for all patients. Specimens were fixed in 10% buffered formalin, embedded in
- 131 paraffin, sliced into 4-µm sections, and stained with haematoxylin and eosin (H&E) for

132	histological examination and Giemsa stain or Gimenez staining for H. pylori
133	identification. All Giemsa-, Gimenez-stained, and H&E-stained biopsy specimens were
134	reviewed by trained pathologists (NS and KH) who were blinded to the patients' data.
135	Histological interpretation was based on the updated Sydney System. Inflammation of
136	the gastric mucosa was defined as the presence of inflammatory infiltrates comprising
137	neutrophils, lymphocytes, and plasma cells. Mucosal atrophy was defined as a loss of
138	glandular tissue. Inflammation, mucosal atrophy, and intestinal metaplasia were
139	classified according to their degree of severity into four categories: none, mild,
140	moderate, and severe. Histological gastritis was defined as the presence of at least one
141	mild (or higher) inflammation, atrophy, or intestinal metaplasia.
142	
143	Assessment of H. pylori infection status
144	H. pylori infection status was determined by Giemsa or Gimenez staining along with
145	histological findings. Patients were determined to be uninfected if both investigations
146	(positive <i>H. pylori</i> by Giemsa or Gimenez staining and presence of histological
147	inflammation, atrophy, and intestinal metaplasia) were negative.
148	
149	Statistical analysis

150	All statistical analyses were non-parametric. To determine whether the findings of <i>H</i> .
151	pylori-positive or H. pylori-negative patients diagnosed by the Kyoto classification of
152	gastritis reflected the histological findings of gastritis, analysis was performed by the
153	chi-square test and evaluated by sensitivity and specificity. The comparisons of the
154	histological scores between the two groups, such as sex differences, were analysed
155	using the Mann–Whitney U test, and three groups, such as age differences, were
156	analysed using the Kruskal-Wallis test. Data were statistically analysed using EZR [12],
157	a modified version of R commander designed to add statistical functions that are
158	frequently used in biostatistics. Statistical significance was set at $p < 0.05$.
159	
160	RESULTS
161	Comparison of the findings of gastritis diagnosed by the Kyoto classification and
162	histological gastritis
163	In total, 303 patients (172 women; mean age, 55.5 years) were diagnosed as <i>H. pylori</i>
164	positive, and 258 patients (146 women; mean age, 43.7 years) were diagnosed as H.
165	pylori negative according to the Kyoto classification of gastritis. There was no sex
165 166	<i>pylori</i> negative according to the Kyoto classification of gastritis. There was no sex difference in the <i>H. pylori</i> infection rate (women, 54.1%; men, 53.9%).

167	A total of 299 patients were diagnosed as <i>H. pylori</i> positive by endoscopic findings
168	according to the Kyoto classification of gastritis with confirmed histological gastritis for
169	most cases; however, this was not the case for four patients for whom histological
170	gastritis was not confirmed. In contrast, among the 254 patients with H. pylori-negative
171	endoscopic findings, histological gastritis was subsequently confirmed in four patients.
172	Therefore, endoscopic findings using the Kyoto classification of gastritis had 98.7%
173	sensitivity and 98.4% specificity for histological gastritis (Table 1). In addition, patients
174	were allocated to three age groups, 20–39, 40–59, and 60–79 years, and the three age
175	groups showed high sensitivity and specificity (sensitivity of 95.9%, 98.3%, and
176	100.0% and specificity of 100.0%, 97.6%, and 96.7%, respectively) (Table 2).
177	
178	Age and sex differences in pathological status by the Sydney System scores in H.
179	pylori-positive and H. pylori-negative cases
180	Figure 2 shows the average scores for inflammation, atrophy, and intestinal
181	metaplasia in the pyloric and fundic mucosae according to <i>H. pylori</i> infection status
182	based on endoscopic findings, as evaluated by the Sydney System score (Figure 2).
183	Inflammation was highly prevalent in the pyloric glands of the younger age group than
184	in other age groups of <i>H. pylori</i> -positive patients, and it significantly declined with age

185	(p <0.05). On the other hand, atrophy and intestinal metaplasia progressed with age
186	(p <0.05). The pyloric and fundic gland inflammation in the younger age group was
187	more severe in women than in men (p <0.05) (Table 3). In addition, fundic gland
188	intestinal metaplasia in the elderly group was more severe in men than in women
189	(p <0.05). No significant sex differences were observed in regard to atrophy in the
190	pyloric and fundic gland mucosae. Conversely, in cases diagnosed as H. pylori negative
191	based on endoscopic findings, inflammation, atrophy, and intestinal metaplasia of the
192	antrum and corpus were rarely observed (antrum and corpus: 0.02, 0.01, and 0.01,
193	respectively), and no change was observed with ageing.

194

195 DISCUSSION

196 Our study demonstrated that the Kyoto classification of gastritis is a useful method to diagnose not only H. pylori infection but also histological gastritis, regardless of age. In 197 198 H. pylori-positive patients, atrophy and intestinal metaplasia progressed with age, and 199 inflammation reduced with age. Regarding sex differences, inflammation in the younger 200 group was more severe in women than in men, and fundic gland intestinal metaplasia in 201 the elderly group was more severe in men than in women.

202 The Kyoto classification of gastritis has been established to determine the presence or 203 absence of *H. pylori* infection based on endoscopic findings, and the gastritis category is 204 divided into current infection, eradication, and non-infection [6]. In the Kyoto 205 classification of gastritis, various endoscopic features have been found to be associated 206 with H. pylori infection in several countries [7-10]. Our previous study found that the 207 'Kyoto classification of gastritis' was a useful method for diagnosing histological gastritis 208 based on endoscopic findings and the presence or absence of *H. pylori* infection in young 209 Japanese people (sensitivity, 98.5%; specificity, 100%) [13]. To the best of our 210 knowledge, there are no reports comparing endoscopic findings according to the Kyoto 211 classification of gastritis and histological findings by age and sex differences, and our 212 study is the first of its kind.

Gastric mucosal atrophy and intestinal metaplasia are strongly associated with the development of gastric cancer [2, 3, 14, 15]. The risk of developing gastric cancer increases with age [16, 17]. Song et al. reported that the incidence rate of gastric cancer is elevated in older age groups, regardless of sex [16]. This result is the same as that observed in Japan [17]. In our study, atrophy and intestinal metaplasia progressed with age. This result is correlated with the relationship between increasing age-related alterations in the background gastric mucosa and the development of gastric cancer.

220	Gastric cancer is more common in men than in women, and the age-standardised and
221	cumulative incidence rates of gastric cancer are twice as high in men compared with those
222	in women [16-19]. In our study, intestinal metaplasia of the corpus was significantly more
223	severe in older men, suggesting that the incidence of gastric cancer is higher in men.
224	Inflammation among young women was higher than that among men in both the antrum
225	and corpus of the stomach. The reason for this remains unclear; however, it may be due
226	to the high frequency of NG in younger women [20-24]. Luzza et al. [20] reported that
227	gastritis scores such as inflammation were higher ($p < 0.0001$) in those with antral
228	nodularity (n=34) than in those without (n=50) [20]. Miyamoto et al. [21] investigated
229	the proportion of NG due to H. pylori infection in adult patients. They reported that the
230	prevalence of NG was highest at 2.2% in the age group of 16–19 years old and gradually
231	decreased with age and the sex ratio of NG in adults showed a female predominance (odds
232	ratio [OR], 3.5; 95% CI, 2.5-4.9) [21]. NG causes strong inflammation and, therefore,
233	poses a high risk of diffuse gastric cancer, and the OR for the risk of gastric cancer in
234	patients with NG was 2.1 (95% CI, 0.3–15.3) in the age group of 40 years old [21, 22].
235	Overall, the prevalence of gastric cancer by age group published by the National Cancer
236	Center in Japan in 2015 [25] showed that gastric cancer predominantly occurs in men.
237	However, only younger women, such as those aged 20–39 years, are more likely to have

238 gastric cancer than men (sex ratio of gastric cancer incidence in the age group of 20-239 39 years old: M/F=0.37-0.90). Our study showed that the endoscopic findings of NG 240 were more frequently observed in younger women than in men (12.8% vs. 63%). The 241 effects of different sex hormones have been reported as the reason for sex-related 242 differences in inflammation; however, it is not clear why inflammation is more severe in 243 women [26, 27]. These data may indicate that younger women are more susceptible to 244 gastric cancer than men because of the strong association between inflammation and 245 carcinogenesis [28].

246 Our study has several limitations. First, this was a retrospective study. Second, biopsy 247 specimens were obtained only from the greater or lesser curvature of the antrum and 248 corpus. Thus, our histological findings of gastritis may not be representative of the entire 249 stomach. However, inflammation and atrophy appear as diffuse changes and can be 250 diagnosed using spot biopsies. Finally, we could not exclude patients with previous 251 infections that had been accidentally completely eradicated, and H. pylori infection was 252 diagnosed using histological Giemsa or Gimenez staining. Therefore, the result of no 253 histological gastritis, which was diagnosed as endoscopic gastritis, may have occurred after accidental eradication. However, we evaluated *H. pylori* eradication using the results 254

of past questionnaires and medical records. The sensitivity and specificity of these
staining methods were 88% and 98%, respectively [29, 30].

If these data can be reproduced in a prospective validation study, the assessment of the gastric mucosa diagnosed according to the Kyoto classification of gastritis can provide a real-time diagnosis based on the histological findings of the gastric mucosa, which may be cost saving. Furthermore, our study did not use magnification or chromoendoscopy; therefore, it may be more likely to improve the endoscopic diagnosis of gastric mucosal changes using magnification or chromoendoscopy.

In conclusion, our present study demonstrates that the Kyoto classification of gastritis is useful for diagnosing both *H. pylori* infection and histological gastritis based on endoscopic findings, regardless of age. Because Japanese individuals have severe inflammation of the gastric mucosa due to *H. pylori* infection at a young age, early detection of *H. pylori* and prompt curative eradication therapy are important to prevent the onset of gastric cancer.

269

270 ACKNOWLEDGMENTS

271 We are grateful to the previous and present staff at the gastroenterology and pathology

272 laboratories, as well as our laboratory, for their valuable support during this study.

273 DISCLOSURE OF INTEREST

274 The authors report no conflict of interest.

275 STATEMENT OF ETHICS

- 276 All patients provided informed consent, and the research protocol was approved by the
- 277 Ethics Committee of Kawasaki Medical School (approval number: 3319-3).

278 FUNDING SOURCES

279 No funding was received for this study.

280 AUTHOR CONTRIBUTIONS

- 281 NS, KH, TK, and NM conceived and designed the study. NS, KH, MS, NM, YY, SF,
- and TT analysed and interpreted the data. KH and TA provided pathological reviews.
- 283 NS, KH, and TT wrote the manuscript. NS, KH, TK, NM, and AS contributed to the
- study materials and patients. KH and TT contributed to study supervision. All authors
- approved the final version of the manuscript for submission.
- 286
- 287
- 288

289 **REFERENCES**

- 290 **1.** Warren JR, Marshall B. Unidentified curved bacilli on gastric epithelium in
- 291 active chronic gastritis. *Lancet* 1983;1(8336):1273–1275.
- 292 2. Uemura N, Okamoto S, Yamamoto S, et al. Helicobacter pylori infection and the
- development of gastric cancer. *N Engl J Med* 2001;345(11):784–789.
- **3.** Graham DY. History of Helicobacter pylori, duodenal ulcer, gastric ulcer and gastric
- 295 cancer. World J Gastroenterol 2014;20(18):5191–5204.
- 296 **4.** Price AB. The Sydney System: histological division. *J Gastroenterol Hepatol*
- 297 1991;6:209–222.
- 298 5. Dixon MF, Genta RM, Yardley JH, et al. Classification and grading of gastritis. The
- 299 updated Sydney System. International Workshop on the Histopathology of Gastritis,
- 300 Houston 1994. Am J Surg Pathol 1996;20(10):1161–1181.
- 301 6. Haruma K. Kyoto classification of gastritis. Tokyo, Nihon Medical Center,
- 302 2017.
- 303 **7.** Kato T, Yagi N, Kamada T, et al. Diagnosis of *Helicobacter pylori* infection in
- 304 gastric mucosa by endoscopic features: a multicenter prospective study. *Dig*
- 305 *Endosc* 2013;25(5):508–518.

306	8. Toyoshima O, Nishizawa T, Yoshida S, et al. Endoscopy- based Kyoto classification
307	score of gastritis related to pathological topography of neutrophil activity. World J
308	Gastroenterol 2020;26(34):5146-5155.
309	9. Yoshii S, Mabe K, Watano K, et al. Validity of endoscopic features for the diagnosis
310	of Helicobacter pylori infection status based on the Kyoto classification of gastritis. Dig
311	Endosc 2020;32(1):74–83.
312	10. Ebigbo A, Marienhagen J, Messmann H. Regular arrangement of collecting venules
313	and the Kimura-Takemoto classification for the endoscopic diagnosis of Helicobacter
314	pylori infection: Evaluation in a Western setting. <i>Dig Endosc</i> 2021;33(4):587–591.
315	11. Kimura K, Takemoto T. An endoscopic recognition of the atrophic border and
316	its significance in chronic gastritis. Endoscopy 1969;1(3):87–97.
317	12. Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for
318	medical statistics. Bone Marrow Transplant 2013;48(3):452-458.
319	13. Suehiro M, Kamada T, Haruma K, et al. The role of Kyoto classification in the
320	diagnosis of Helicobacter pylori infection and histologic gastritis among young subjects
321	in Japan. <i>Kawasaki Med J</i> 2019;45:43–52.
322	14. Correa P, Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology
323	2007;133(2):659–672.

324	15. Sipponen P, Kimura K. Intestinal metaplasia, atrophic gastritis and stomach cancer:
325	trends over time. Eur J Gastroenterol Hepatol 1994;6 Suppl 1:S79–S83.
326	16. Song M, Kang D, Yang JJ, et al. Age and sex interactions
327	in gastric cancer incidence and mortality trends in Korea. Gastric Cancer
328	2015;18(3):580–589.
329	17. Marugame T, Matsuda T, Kamo K, et al. Cancer incidence and incidence rates in
330	Japan in 2001 based on the data from 10 population-based cancer registries. Jpn J Clin
331	Oncol 2007;37(11):884–891.
332	18. Malvezzi M, Bonifazi M, Bertuccio P, et al. An age-period-cohort analysis
333	of gastric cancer mortality from 1950 to 2007 in Europe. Ann Epidemiol
334	2010;20(12):898–905.
335	19. Sipponen P, Correa P. Delayed rise in incidence of gastric cancer in females results
336	in unique sex ratio (M/F) pattern: etiologic hypothesis. Gastric Cancer 2002;5(4):213-
337	219.
338	20. Luzza F, Pensabene L, Imeneo M, et al. Antral nodularity identifies children
339	infected with Helicobacter pylori with higher grades of gastric inflammation.
340	Gastrointest Endosc 2001;53(1):60–64.
341	21. Miyamoto M, Haruma K, Yoshihara M, et al. Nodular gastritis in adults is caused

- 342 by Helicobacter pylori infection. *Dig Dis Sci* 2003;48(5):968–975.
- 343 22. Kitamura S, Yasuda M, Muguruma N, et al. Prevalence and characteristics of
- nodular gastritis in Japanese elderly. J Gastroenterol Hepatol 2013;28(7):1154–1160.
- 345 23. Shiotani A, Kamada T, Kumamoto M, et al. Nodular gastritis in Japanese young
- adults: endoscopic and histological observations. J Gastroenterol 2007;42(8):610–615.
- 347 24. Bujanover Y, Konikoff F, Baratz M. Nodular gastritis and Helicobacter pylori. J
- 348 Pediatr Gastroenterol Nutr 1990;11(1):41–44.
- 349 **25.** Cancer Statistics. Cancer Information Service, National Cancer Center, Japan
- 350 (National Cancer Registry, Ministry of Health, Labour and Welfare),
- 351 https://ganjoho.jp/reg_stat/statistics/index.html (accessed: 29 June 2021).
- 352 26. Asai K, Hiki N, Mimura Y, et al. Gender differences in cytokine secretion by human
- 353 peripheral blood mononuclear cells: role of estrogen in modulating LPS-induced
- 354 cytokine secretion in an ex vivo septic model. *Shock* 2001;16(5):340–343.
- 355 27. Schröder J, Kahlke V, Staubach KH, et al. Gender differences in human sepsis. Arch
- 356 Surg 1998;133(11):1200–1205.
- 357 28. Haruma K, Komoto K, Kamada T, et al. *Helicobacter pylori* infection is a major
- 358 risk factor for gastric carcinoma in young patients. Scand J Gastroenterol
- 359 2000;35(3):255–259.

- 360 **29.** Laine L, Lewin DN, Naritoku W, et al. Prospective comparison of H&E, Giemsa,
- 361 and Genta stains for the diagnosis of *Helicobacter pylori*. *Gastrointest Endosc*
- 362 1997;45(6):463–467.
- 363 **30.** Thijs JC, van Zwet AA, Thijs WJ, et al. Diagnostic tests for *Helicobacter pylori*: a
- 364 prospective evaluation of their accuracy, without selecting a single test as the gold
- 365 standard. *Am J Gastroenterol* 1996;91(10):2125–2129.
- 366
- 367
- 368

369 TABLES

- 370 Table 1: The concordance rate between *Helicobacter pylori*-infectious gastritis
- 371 diagnosed by the Kyoto classification of gastritis and histological gastritis
- 372 (sensitivity and specificity)
- 373

Histological gastritis via biopsy

		spee		
		Positive	Negative	Total
H. pylori infection via	Positive	299	4	303
the Kyoto classification	Negative	4	254	258
Total		303	258	561

specimens

374

- 375 Sensitivity: 299/303=98.7%
- 376 Specificity: 254/258=98.4%
- 377 Positive predictive value: 299/303=98.7%
- 378 Negative predictive value: 254/258=98.4%
- 379 Accuracy: 553/561=98.6%

381 **Table 2: The concordance rate between** *Helicobacter pylori*-infectious gastritis

382 diagnosed by the Kyoto classification of gastritis and histological gastritis by age

383 difference (sensitivity and specificity)

384

385 Young age group (20–39 years old)

Histological gastritis via biopsy

	spec	specimens	
	Positive	Negative	Total
<i>H. pylori</i> infection via Positive	47	0	47
the Kyoto classification Negative	2	115	117
Total	49	115	164

386 Sensitivity, 47/49=95.9%; specificity, 115/115=100.0%; *p*<0.05

387

388 Middle age group (40–59 years old)

Histological gastritis via biopsy

		specimens		
	-	Positive	Negative	Total
H. pylori infection via	Positive	118	2	120

the Kyoto classification Negative	2	81	83
Total	120	83	203
Sensitivity, 118/120=98.3%; specificity,	81/83=97.6%; <i>p</i> <	<0.05	
Elderly age group (60–79 years old)			
	the Kyoto classification Negative Total Sensitivity, 118/120=98.3%; specificity, Elderly age group (60–79 years old)	the Kyoto classification Negative 2 Total 120 Sensitivity, 118/120=98.3%; specificity, 81/83=97.6%; p Elderly age group (60–79 years old)	the Kyoto classification Negative 2 81 Total 120 83 Sensitivity, 118/120=98.3%; specificity, 81/83=97.6%; p<0.05 83 Elderly age group (60–79 years old) 81

Histological gastritis via biopsy

	spect	specimens	
	Positive	Negative	Total
<i>H. pylori</i> infection via Positive	134	2	136
the Kyoto classification Negative	0	58	58
Total	134	60	194

392 Sensitivity, 134/134=100.0%; specificity, 58/60=96.7%; *p*<0.05

393

Table 3: The comparison of background gastric mucosal histological findings in

Helicobacter pylori-positive cases by sex

398 Inflammation

	Biopsy	Male	Female	P value
20–39	Antrum	2.15±0.08	2.44±0.11	0.039 (<0.05)
(M, n=20; F,	Corpus	1.15±0.23	1.89±0.16	0.014 (<0.05)
n=27)				
40–59	Antrum	2.12±0.09	2.14±0.09	0.736 (NS)
(M, n=51; F,	Corpus	1.08±0.12	1.35±0.11	0.11 (NS)
n=69)				
60–79	Antrum	1.90±0.10	1.72±0.09	0.17 (NS)
(M, n=60; F,	Corpus	1.48±0.13	1.43±0.11	0.84 (NS)
n=76)				
Atrophy				

	Biopsy	Male	Female	P value
20–39	Antrum	1.00±0.22	0.85±0.16	0.726 (NS)

(M, n=20; F,	Corpus	0.30±0.14	0.48±0.15	0.358 (NS)
n=27)				
40–59	Antrum	1.47±0.13	1.54±0.11	0.756 (NS)
(M, n=51; F,	Comput	0.76+0.12	0.01+0.10	0 105 (NIC)
n=69)	Corpus	0.70±0.13	0.91±0.10	0.193 (NS)
60–79	Antrum	1.68±0.13	1.53±0.11	0.385 (NS)
(M, n=60; F,	Corpus	1.05±0.13	0.91±0.09	0.534 (NS)
n=76)	-r			

402 Intestinal metaplasia

	Biopsy	Male	Female	P value
20–39	Antrum	0.40±0.22	0.22±0.13	0.656 (NS)
(M, n=20; F, n=27)	Corpus	0.05±0.04	0.04±0.05	0.854 (NS)
40–59	Antrum	0.29±0.11	0.20 ± 0.07	0.649 (NS)
(M, n=51; F,	Corpus	0.10±0.13	0.04±0.10	0.192 (NS)
n=69)				
60–79	Antrum	0.70±0.13	0.64±0.12	0.525 (NS)

	(M, n=60; F,	Corpus	0.32 ± 0.11	0.05 ± 0.03	0.040 (<0.05)
	n=76)				
403					
404	<i>P</i> value, male ver	sus female; NS,	not significant		
405	The mean±SE of	inflammation, a	trophy, and intesti	nal metaplasia sco	res
406					
407					
408					
409					
410					
411					
412					
413					
414					
415					
416					
417					
418					

419 FIGURES

*Autoimmune gastritis, eosinophilic gastroenteritis, acute gastric mucosal lesiomrtpl hypertensive gastropathy, an Ménétrier disease **In flammatory bowel disease, hematological tumor, renal dysfunction, an dollagen disease ***Nonsteroidal antinflammatory drugs, H2-receptor antagonists, proton pump inhibitome, bamipide, immunesuppressors, and immunomodulators

Figure 2

Histological score 0:none, 1:mild, 2:moderate, 3:severe *p<0.05 NS: Not Significant

438 **FIGURE CAPTIONS:**

- 439 **Figure 1.** Diagram of the enrolment of study participants.
- 440
- 441 Figure 2. Comparison of background gastric mucosal histological findings in
- 442 *Helicobacter pylori*-positive patients by age.
- 443 The mean \pm SE of inflammation, atrophy, and intestinal metaplasia scores of pyloric
- 444 and fundic mucosal biopsies in *H. pylori*-positive patients according to three age
- 445 groups.
- 446 The vertical axis shows the updated Sydney System score. The horizontal axis shows
- 447 inflammation, atrophy, and intestinal metaplasia divided into the pyloric and fundic
- 448 glands. The bar graph is colour-coded by three age groups.
- 449 I, inflammation; A, atrophy; IM, intestinal metaplasia.